Углекислота, которую выделяют животные и люди, — это всего 5 процентов ее количества, потребляемого растениями ежегодно. Откуда же берутся остальные 95 процентов? Их дают бактерии. Разрушая попавших в почву погибших животных п растения (органические вещества), бактерии оставляют от них «груду обломков» — отдельные сложные молекулы. В качестве «отходов производства» при этом и образуется с голь необходимая растениям углекислота.
Микроорганизмы — это зачинатели и завершители всего кругооборота веществ на земле!
Оказывается, микроскопическим существам удается сохраниться б самых различных местах земного шара при наиболее суровых условиях. Многие живущие в почве микроорганизмы настолько неприхотливы в питании, что способны развиваться на скудных, однообразных питательных средах, содержащих в качестве источника углерода иногда всего лишь одно органическое соединение, например окись углерода. Без углерода, как известно, нет самой жизни.
Мало того. Некоторые виды бактерий, превратившись в споры, неопределенно долгое время, может быть даже столетиями, обходятся и… вовсе без всякой пищи. А после этого возрождаются вновь.
Недавно двое немецких ученых открыли в залежах соли под источниками курорта Бад-Наугейм неизвестные бактерии, обитавшие в море, которое когда-то омывало эту область. Море давно высохло, а микроорганизмы, заключенные в кристалликах соли, сохранились. Соль поглотила влагу бактерий, не изменив структуру их белков. Растворили кристаллы в питательном растворе — и бактерии ожили.
Вот еще один пример удивительной жизнестойкости микроорганизмов: они выносят давление в несколько тысяч атмосфер, температуры от абсолютного нуля (—273°) до 170° тепла.
Ионизирующее излучение в 500–800 рентген, представляющее смертельную опасность для человека, не убивает крошечных носителей жизни, а очень многие переносят дозы в сотни раз большие. Кто знает, может быть, именно микроорганизмы владеют секретом биологической защиты от гибельного излучения?..
Каждая бактериальная клетка, несмотря на свои ничтожные размеры — сложная живая химическая фабрика, работающая с огромной мощностью. За сутки она съедает и перерабатывает общее количество пищи, в 20–30 раз превышающее ее собственный вес. На земле нет других живых существ, которые обладали бы такой поистине исключительной способностью к продолжению рода и размножению, как бактерии. При благоприятных условиях потомство только одной делящейся надвое каждые полчаса клетки в короткий срок могло бы покрыть всю земную поверхность.
Наконец, в каждой бактериальной клетке, словно в миниатюрном зеркале, отражаются законы развития, свойственные всем живым организмам. Отличная природная модель для научных исследований!
И подумайте, разве все эти качества микроорганизмов не делают их прекрасными помощниками человека в одном из его самых великих свершений — в освоении космоса! Родилась новая отрасль науки — космическая микробиология, а непременными участниками полетов за пределы Земли стали невидимые космонавты — микроорганизмы.
НА ОРБИТЕЧеловек готовился к полету в космос — совершенно неизведанную среду обитания, где все живое подстерегал ряд опасностей: космическое излучение — стремительно несущийся поток ядерных частиц колоссальных энергий; вибрация, перегрузки, невесомость. Не окажутся ли они гибельными для всего живого?
Ответ могли дать лишь опыты, проведенные непосредственно в космическом пространстве.
Весь мир знает наших первых четвероногих космонавтов — собак Лайку, Белку, Стрелку, Чернушку, Звездочку. Но самой точной регистрации жизненных процессов у собаки во время полета и самых тщательных наблюдений за ней после полета все же было недостаточно, чтобы решить, насколько безопасен полет для человека. В какой мере условия космического полета влияют ка жизнеспособность отдельных клеток многоклеточного организма? Ответ на этот вопрос могли дать только существа, состоящие из одной-единственной клетки, то есть микробы.
И поэтому коллектив советских ученых, приняв во внимание этот вывод, начал вплотную заниматься всем сложнейшим комплексом работ, связанных с подготовкой к космическому полету микрокосмонавтов.
Как и полагается настоящим космонавтам, они прежде всего предстали перед строгой «отборочной комиссией».
Ее задача состояла в том, чтобы среди бесконечного множества самых несхожих микроорганизмов, среди всего, выражаясь языком Линнея, «хаоса», выбрать кандидатуры, в которых сочетался бы ряд качеств, нужных для поставленных целей.
Каких же именно? Прежде всего нужны были микроорганизмы, совершенно безвредные для человека. Некоторые из них должны были «уметь» обходиться и жить без кислорода. (Надо сказать, что, хотя большинству микроорганизмов он необходим, как и другим живым существам, существует ряд бактерий, называемых анаэробами, которые живут без кислорода.)
Микрокосмонавтов, конечно, следовало отбирать среди бактерий, способных образовывать споры. Споры в отличие от самих бактерий, хрупких и недолговечных, можно было послать в полет не на день и не на два, а на любой срок.
Попав в питательную среду, споры в любую минуту легко вновь обращаются в обычные бактерии.
Ученые искали микроорганизмы, отличающиеся какой-нибудь одной яркой особенностью, например способностью резко менять химический состав питательной среды. Используя это свойство, можно было бы с помощью приборов судить на расстоянии о самочувствии бактерий в полете. Ведь у них не сосчитаешь пульс и не измеришь кровяное давление.
Чувствительность бактериальных клеток к космическим лучам далеко не одинакова. Диапазон ее очень велик: от десятых долей рентгена до десятков тысяч рентген. Микрокосмонавтов подобрали так, чтобы создать из них живую шкалу для регистрации разных доз излучения: начиная от тех, какие способны выносить излучение громадной интенсивности, и кончая бактериями, чувствительными к ничтожным дозам.
Соблюдение всех требований, предъявляемых к будущим космическим путешественникам, делало отбор, безусловно, сложнейшей научной задачей.
Отобранные виды бактерий подвергали предварительным лабораторным испытаниям.
Как и полагается будущим космонавтам, они переносили огромные перегрузки на центрифугах, часами тряслись ка вибростендах.
Чтобы определить, как повлияют ка бактерии те или другие воздействия, с которыми, может быть, им придется встретиться в необычном полете, микроорганизмы подвергали и таким опытам, которые с человеком недопустимы, — например, радиоактивному облучению.
Обширная «программа подготовки» помогла микробиологам представить, что может произойти с микрокосмонавтами во время пребывания на орбите.
Все это облегчило предстартовые приготовления.
Участников полета заключили в маленькие специальные ампулы, которые спрятали в эбонитовые чехлы. Ампулы набили, как папиросы в портсигар, в небольшие контейнеры. А эти металлические контейнеры помещены в космическом корабле.
На Земле в лабораториях оставались контрольные образцы точно таких же бактериальных культур, чтобы по возвращении их можно было сравнить с двойниками и точно установить, как повлиял полет на микрокосмонавтов.
Успехи первых же опытов в космосе были огромны, но ученым эта разведка казалась недостаточной. Они хотели наблюдать микроорганизмы не только до и после, но и во время полета, особенно когда его продолжительность увеличилась. Так возникла необходимость создать автоматические приборы, которые приводились бы в действие самими микроорганизмами, сигнализируя об их самочувствии из космоса в любой нужный момент.
Поиски начались вновь.
В ЧЕМОДАНЕ С ДВОЙНЫМ ДНОМСначала несколько слов об одном из микробов, который называют палочкой маслянокислого брожения. Этот микроб относится к числу «бродильных», открытых еще в прошлом столетии Луи Пастером. Пастер обнаружил, что такие микроорганизмы выделяют в окружающую среду особые вещества — ферменты, вызывающие процессы брожения.
Ферменты вызывают и ускоряют сложные химические реакции, например расщепление крахмала. При этом образуется кислота и большое количество газа. Вот почему «бродильные» микробы называют еще газообразующими.
Палочки маслянокислого брожения отвечали всем требованиям, которые предъявлялись к невидимым космонавтам. Они совершенно безвредны для человека. При неблагоприятных внешних условиях эти бактерии постепенно меняются: их содержимое сгущается, они теряют жгутики, с помощью которых быстро плавают, покрываются плотной, прочной оболочкой и превращаются в споры.
А споры легко переносят кипячение, замораживание, высушивание. Жизнь как будто замирает, едва теплится. Но это, безусловно, жизнь. Ведь и семена в замерзшей почве хранятся до тех пор, пока солнечное тепло не заставит их ожить и дать зеленые всходы.
А споры легко переносят кипячение, замораживание, высушивание. Жизнь как будто замирает, едва теплится. Но это, безусловно, жизнь. Ведь и семена в замерзшей почве хранятся до тех пор, пока солнечное тепло не заставит их ожить и дать зеленые всходы.
Исходя из этого советские ученые решили использовать газообразующее свойство этих микроорганизмов. «Что, если попытаться «выдрессировать» их так, — думал ученый, — чтобы на тщательно подобранных питательных средах они образовывали строго определенное количество газа? Тогда, если опыт поставить с достаточной точностью, показание газообразования можно передать со спутника Земли с помощью телеметрических систем».
Чтобы достичь такой степени точности, в одной из лабораторий начались поиски и подбор подходящих питательных сред.
Дни, а подчас и ночи напролет коллектив проводил за бесконечными опытами. Палочки сперва не хотели «слушаться». На одном «бульоне» они вдруг неудержимо размножались и бурно выделяли газ, на другом словно засыпали. Не так-то легко заставить работать живые организмы с точностью часов!
После долгих поисков необходимая питательная среда была найдена.
Но вторая задача оказалась технически куда более сложной.
Как снарядить газообразующие бактерии в путешествие? Обычные запаянные ампулы, плотно упакованные в контейнер, на этот раз не годились. Нужно было создать прибор-автомат, который сам точно регистрировал бы наличие газа, выделяемого бродильными микроорганизмами.
Создание прибора начали с простых на первый взгляд опытов. Питательные растворы с посеянными в них спорами наливали в обычные стеклянные шприцы для инъекций — такими делают уколы в любой амбулатории. Закрыв тщательно притертыми поршнями, их помещали в термостат при температуре 37 °C. Место, где на шприц насаживается игла, плотно закрывали.
В теплом термостате на «вкусном» питательном бульоне споры прорастали, бактериальные клетки начинали размножаться, выделять ферменты.
Ферменты вызывали брожение… И спустя 12–15 часов дежуривший в лаборатории сотрудник слышал приглушенный звук выстрела: газ вышибал поршень.
Этот, казалось бы, несложный принцип (не станем повторять, что стоит найти в науке «простое» решение, так как к любому «простому» решению ведут очень сложные пути) конструкторы использовали при создании автоматического приборчика, названного биоэлементом.
Созданный ими прибор внешне походил на металлический цилиндр, а внутри разделялся стеклянной перегородкой на две изолированные камеры — этакий чемодан с двойным дном. В верхнюю камеру «загружали» споры, а в нижнюю наливали питательную среду.
Сверху на цилиндр навинчивалось ударное устройство. В любой момент по команде автомата боек ударного устройства разбивал стеклянную перегородку, и споры автоматически высевались в питательную среду. Дно нижней камеры заменяла гибкая мембрана. По мере образования газа давление внутри биоэлемента увеличивалось, мембрана прогибалась и замыкала электрические контакты. На Землю поступал радиосигнал: палочки живут и здравствуют. Создание биоэлемента позволяло отныне посылать микрокосмонавтов в полет на любые сроки и расстояния.
И действительно, помещенные внутри космического корабля споры могли лететь, сколько и куда угодно. Ученые стали мечтать о том, чтобы забросить биоэлемент, например, на Луну и через несколько лет проверить, прорастут ли заключенные в нем споры. Но пока биоэлемент позволял микробиологам в любое время получить сведения, как переносят полет невидимые космонавты.
«СКОЛЬКО РЕНТГЕН?»Микроорганизмы, как и всякие живые существа, могут «болеть». У них есть враги — бактериофаги (буквально: «пожиратели бактерий»).
Бактериофаги, или просто фаги, — это вирусы бактерий, и живут Оки, как все вирусы, только внутри клеток. Если разрезать клетку, пораженную, но еще не полностью разрушенную фагом, то под электронным микроскопом можно отчетливо увидеть внутри ядра темные пятнышки. Каждое такое пятнышко — отдельный фаг.
Природа вирусов до сих пор вызывает споры ученых. Одни склонны видеть в них живые простейшие существа, другие, например академик А. И. Опарин, считают, что вирусы гораздо больше похожи на вещества. Дело в том, что вне клеток они вступают в химические соединения с различными веществами, а внутри клеток размножаются, как и все живое.
Сравнительно недавно обнаружены такие виды микроорганизмов, в которых бактериофаги как бы притаились и в нормальных условиях не беспокоят их. Способность совместного существования с бактериофагом передается по наследству от одной бактерии к другой в сотнях и тысячах сменяющихся поколений. Такие бактерии называются лизогенными. Но если лизогенные бактерии подвергаются воздействию рентгеновских лучей или другого вида ионизирующих лучей, в том числе и космических, то у них происходит изменение наследственных свойств.
Это приводит к тому, что притаившиеся фаги как бы пользуются вдруг возникшей «слабостью» бактерии и начинают размножаться в ней, приводя бактерию к гибели.
В отличие от всех известных живых существ лизогенные бактерии чувствительны даже к небольшим дозам излучений, их наследственные свойства изменяются под влиянием ничтожной дозы — 73 рентгена.
Лизогенных бактерий тоже решено было использовать в исследованиях космоса — ведь они смогут уловить космическое излучение и тогда, когда самые чувствительные и, добавим, занимающие довольно много места приборы его не улавливают. Количество фага будет соответствовать дозе облучения.
Лизогенные бактерии отправляли в полет в запаянных ампулах. Когда они возвращались из полета, их заливали быстро застывающим веществом, похожим на парафин, — метилметакрилатом. Получавшиеся свечки разрезали на тончайшие золотистые диски. Сотрудники лаборатории виртуозно, что называется с ювелирным искусством готовили из стекла специальные ножи с острыми, тончайшими лезвиями. Ножи рассекали заключенных в свечке бактерий величиной в, полтора микрона. А затем их исследовали под электронным микроскопом.
Кроме того, вернувшиеся из полета лизогенные бактерии высевали на твердые питательные среды, в которых заранее уже были выращены колонии чувствительных к бактериофагу кишечных палочек.
По числу разрушенных бактериофагом микробных колоний легко определяли количество фага, образовавшегося за время полета, а стало быть, дозу космического облучения, которой подвергся корабль и все, кто находился на его борту.
НЕВЕДОМАЯ ЖИЗНЬТеперь, после того как советские люди открыли новую, космическую эру в истории человечества, нас особенно волнует вопрос о существовании жизни на других планетах.
В научно-фантастических повестях и рассказах планеты населены похожими или не похожими на людей разумными существами. Воображение читателя потрясают огромные чудовища и буйная растительность Венеры. Мудрые и жестокие марсиане куют в глубоких «подмарсельях» таинственное оружие…
Но давайте подумаем о другом: если самое многочисленное население Земли — микробы так неприхотливы, то почему бы им не здравствовать благополучно где-нибудь на Юпитере или на том же Марсе?
«С их точки зрения» условия там вполне выносимы. И выполняют они, по-видимому, ту же роль, что принадлежит им на нашей планете. Может быть, там они также являются той самой нижней ступенькой эволюции живых организмов, какой они явились когда-то на Земле.
Вот почему, оставив заманчивые, но подчас необоснованные фантазии, наука при изучении жизни вне Земли прежде всего, вероятно, займется поисками невидимого живого мира. И ведь незачем откладывать в долгий ящик начало исследований, ждать, пока отправятся экспедиции на Марс или на Венеру. Встречи с микроорганизмами возможны, по мнению ученых, уже на Луне и в межпланетном пространстве.
Уже несколько раз при исследовании метеоритов ученые обнаруживали в них остатки органических веществ.
В газете «Правда» совсем недавно появилась маленькая заметка, в которой сообщалось, что сотруднику нефтяного института в Ленинграде удалось извлечь из каменного метеорита углистый порошок, в котором после соответствующей обработки были обнаружены спороподобные образования и микроскопические остатки организмов.
Что найдено в метеоритах? Споры обитающих на других планетах микроорганизмов или обуглившиеся остатки земного происхождения, попавшие в полурасплавленный метеорит при его падении? Трудно ответить на все возникающие вопросу до тех пор, пока не удастся добыть метеорит за пределами земной атмосферы.
Большие надежды возлагают ученые на первые посещения Луны. На Луне атмосферы нет, и поэтому метеориты беспрепятственно достигают ее поверхности. Там веками накапливается, если так можно выразиться, их ценнейшая коллекция.