Например, если электронные медицинские записи показывают, что в определенном сочетании апельсиновый сок и аспирин способны излечить от рака, то точная причина менее важна, чем сам факт: лечение эффективно. Если мы можем сэкономить деньги, зная, когда лучше купить авиабилет, но при этом не имеем представления о том, что стоит за их ценообразованием, этого вполне достаточно. Вопрос не в том почему, а в том что. В мире больших данных нам не всегда нужно знать причины, которые стоят за теми или иными явлениями. Лучше позволить данным говорить самим за себя.
Нам больше не нужно ограничиваться проверкой небольшого количества гипотез, тщательно сформулированных задолго до сбора данных. Позволив данным «говорить», мы можем уловить корреляции, о существовании которых даже не подозревали. В связи с этим хедж-фонды анализируют записи в Twitter, чтобы прогнозировать работу фондового рынка. Amazon и Netflix рекомендуют продукты исходя из множества взаимодействий пользователей со своими сайтами. А Twitter, LinkedIn и Facebook выстраивают «социальные графы» отношений пользователей для изучения их предпочтений.
Разумеется, люди анализировали данные в течение тысячелетий. И письменность в древней Месопотамии появилась благодаря тому, что счетоводам нужен был эффективный инструмент для записи и отслеживания информации. С библейских времен правительства проводили переписи для сбора огромных наборов данных о своем населении, и в течение двухсот лет актуарии собирали ценнейшие данные о рисках, которые они надеялись понять или хотя бы избежать.
В «аналоговую эпоху» сбор и анализ таких данных был чрезвычайно дорогостоящим и трудоемким. Появление новых вопросов, как правило, означало необходимость в повторном сборе и анализе данных.
Большим шагом на пути к более эффективному управлению данными стало появление оцифровки — перевода аналоговой информации в доступную для чтения на компьютерах, что упрощало и удешевляло ее хранение и обработку. Это значительно повысило эффективность. То, на что раньше уходили годы сбора и вычисления, теперь выполнялось за несколько дней, а то и быстрее. Но, кроме этого, мало что изменилось. Люди, занимающиеся анализом данных, были слишком погружены в аналоговую парадигму, предполагая, что наборы данных имели единственное предназначение, в котором и заключалась их ценность. Сама технология закрепила этот предрассудок. И хотя оцифровка важнейшим образом способствовала переходу на большие данные, сам факт существования компьютеров не обеспечил этот переход.
Трудно описать нынешнюю ситуацию существующими понятиями. Для того чтобы в целом очертить изменения, воспользуемся датификацией (data-ization) — концепцией, с которой познакомим вас в пятой главе. Речь идет о преобразовании в формат данных всего, что есть на планете, включая то, что мы никогда не рассматривали как информацию (например, местоположение человека, вибрации двигателя или нагрузку на мост), путем количественного анализа. Это открывает перед нами новые возможности, такие как прогнозный анализ. Он позволяет обнаружить, например, что двигатель вот-вот придет в неисправность, исходя из его перегрева или производимых им вибраций. В результате мы можем открыть неявное, скрытое значение информации.
Полным ходом ведется «поиск сокровищ» — извлечение ценных идей из данных и раскрытие их потенциала путем перехода от причинности к корреляции. Это стало возможным благодаря новым техническим средствам. Но сокровища заключаются не только в этом. Вполне вероятно, что каждый набор данных имеет внутреннюю, пока еще не раскрытую ценность, и весь мир стремится обнаружить и заполучить ее.
Большие данные вносят коррективы в характер бизнеса, рынков и общества, о которых подробнее мы поговорим в шестой и седьмой главах. В ХХ веке особое значение придавалось не физической инфраструктуре, а нематериальным активам, не земле и заводам, а интеллектуальной собственности. Сейчас общество идет к тому, что новым источником ценности станет не мощность компьютерного оборудования, а получаемые им данные и способ их анализа. Данные становятся важным корпоративным активом, жизненно важным экономическим вкладом и основой новых бизнес-моделей. И хотя данные еще не вносятся в корпоративные балансовые отчеты, вероятно, это вопрос времени.
Несмотря на то что технологии обработки данных появились некоторое время назад, они были доступны только агентствам по шпионажу, исследовательским лабораториям и крупнейшим мировым компаниям. Walmart[18] и CapitalOne[19] первыми использовали большие данные в розничной торговле и банковском деле, тем самым изменив их. Теперь многие из этих инструментов стали широкодоступными.
Эти изменения в большей мере коснутся отдельных лиц, ведь в мире, где вероятность и корреляции имеют первостепенное значение, специальные знания менее важны. Узкие специалисты останутся востребованными, но им придется считаться с большими данными. Помните, как в фильме «Человек, который изменил всё»:[20] на смену бейсбольным скаутам пришли специалисты по статистике, а интуиция уступила место сложной аналитике. Нам придется пересмотреть традиционные представления об управлении, принятии решений, человеческих ресурсах и образовании.
Большинство наших учреждений создавались исходя из предположения, что информация, используемая при принятии решений, характеризуется небольшим объемом, точностью и причинностью. Но все меняется: если данных чрезвычайно много, они быстро обрабатываются и не допускают неточности. Более того, из-за огромного объема информации решения принимают не люди, а машины. Темную сторону больших данных мы рассмотрим в восьмой главе.
Общество накопило тысячелетний опыт понимания и регулирования поведения человека. Но что делать с алгоритмом? Еще на ранних этапах обработки данных влиятельные лица увидели угрозу конфиденциальности. С тех пор общество создало массивный свод правил для защиты конфиденциальной информации. Однако в эпоху больших данных это практически бесполезная «линия Мажино».[21] Люди охотно делятся информацией в интернете, и эта возможность — одна из главных функций веб-служб, а не слабое место, которое нужно устранить.
Опасность для отдельных лиц теперь представляет не угроза конфиденциальности, а вероятность: алгоритмы будут прогнозировать вероятность того, что человек получит сердечный приступ (и ему придется больше платить за медицинское страхование), не выполнит долговые обязательства по ипотечному кредиту (и ему будет отказано в займе) или совершит преступление (и, возможно, будет арестован заранее). Это заставляет взглянуть на неприкосновенность волеизъявления и диктатуру данных с этической точки зрения. Должна ли воля человека превалировать над большими данными, даже если статистика утверждает иное? Подобно тому как печатный станок дал толчок для принятия законов, гарантирующих свободу слова (раньше они не существовали, так как практически нечего было защищать), в эпоху больших данных потребуются новые правила для защиты неприкосновенности личности.
Обществу и организациям во многом придется изменить способы обработки данных и управления ими. Мы вступаем в мир постоянного прогнозирования на основе данных, в котором, возможно, не всегда сможем объяснить причины своих решений. Что значит, если врач не может обосновать необходимость медицинского вмешательства, при этом не требуя согласия пациента полагаться на «черный ящик» (а именно так и должен поступать врач, опирающийся на диагноз, который получен на основе больших данных)? Придется ли в судебной системе менять стандартное понятие «вероятная причина» на «вероятностная причина» — и если да, то каковы будут последствия для свободы человека и его чувства собственного достоинства?
В девятой главе мы предлагаем ряд принципов эпохи больших данных, которые основаны на ценностях, возникших и закрепившихся в более знакомом нам мире «малых данных». Старые правила необходимо обновить в соответствии с новыми обстоятельствами.
Польза для общества будет огромной, поскольку большие данные помогут решению насущных глобальных проблем, таких как борьба с изменением климата, искоренение болезней, а также содействие эффективному управлению и экономическому развитию. При этом эпоха больших данных заставляет нас лучше подготовиться к изменениям организаций и нас самих, которые произойдут в результате освоения технологий.
Большие данные — важный шаг человечества в постоянном стремлении количественно измерить и постичь окружающий мир. То, что прежде невозможно было измерять, хранить, анализировать и распространять, находит свое выражение в виде данных. Использование огромных массивов данных вместо их малой доли и выбор количества в ущерб точности открывают путь к новым способам понимания мира. Это подталкивает общество отказаться от освященного веками поиска причинности и в большинстве случаев пользоваться преимуществами корреляций.
Большие данные — важный шаг человечества в постоянном стремлении количественно измерить и постичь окружающий мир. То, что прежде невозможно было измерять, хранить, анализировать и распространять, находит свое выражение в виде данных. Использование огромных массивов данных вместо их малой доли и выбор количества в ущерб точности открывают путь к новым способам понимания мира. Это подталкивает общество отказаться от освященного веками поиска причинности и в большинстве случаев пользоваться преимуществами корреляций.
Поиск причин стал своего рода религией современности. Большие данные в корне меняют это мировоззрение, и мы снова оказываемся в таком историческом тупике, где «Бог умер». То, в чем мы были непоколебимо уверены, в очередной раз меняется. На этот раз, по иронии судьбы, — за счет более надежных доказательств. Какая роль при этом отводится интуиции, вере, неопределенности, действиям вразрез доказательствам, а также обучению опытным путем? По мере того как мир переходит от поиска причинности к поиску корреляции, что нам нужно делать, чтобы продвигаться вперед, не подрывая глубинных основ общества, гуманности и прогресса, опирающихся на доводы? Эта книга намерена объяснить, в какой точке мы находимся и как сюда попали и какие выгоды и опасности нас ждут впереди.
Глава 2 Больше данных
Большие данные позволяют увидеть и понять связи между фрагментами информации, которые до недавнего времени мы только пытались уловить. По мнению Джеффа Йонаса, эксперта компании IBM по большим данным, нужно позволить данным «говорить». Это может показаться несколько тривиальным, ведь с древних времен люди воспринимали данные в виде обычных ежедневных наблюдений, а последние несколько столетий — в виде формальных количественных единиц, которые можно обрабатывать с помощью сложнейших алгоритмов.[22]
В цифровую эпоху стало проще и быстрее обрабатывать данные и мгновенно рассчитывать миллионы чисел. Но если речь идет о данных, которые «говорят», имеется в виду нечто большее. Большие данные диктуют три основных шага к новому образу мышления. Они взаимосвязаны и тем самым подпитывают друг друга. Первый — это способность анализировать все данные, а не довольствоваться их частью или статистическими выборками. Второй — готовность иметь дело с неупорядоченными данными в ущерб точности. Третий — изменение образа мыслей: доверять корреляциям, а не гнаться за труднодостижимой причинностью. В этой главе мы рассмотрим первый из них — шаг к тому, чтобы использовать все данные, а не полагаться на их небольшую часть.
Задача точного анализа больших объемов данных для нас не новая. В прошлом мы не утруждали себя сбором большого количества данных, поскольку инструменты для их записи, хранения и анализа были недостаточно эффективными. Нужная информация просеивалась до минимально возможного уровня, чтобы ее было проще анализировать. Получалось что-то вроде бессознательной самоцензуры: мы воспринимали трудности взаимодействия с данными как нечто само собой разумеющееся, вместо того чтобы увидеть, чем они являлись на самом деле — искусственным ограничением из-за уровня технологий того времени. Теперь же технические условия повернулись на 179 градусов: количество данных, которые мы способны обработать, по-прежнему ограничено (и останется таким), но условные границы стали гораздо шире и будут расширяться.
В некотором смысле мы пока недооцениваем возможность оперировать большими объемами данных. Основная часть нашей деятельности и структура организаций исходят из предположения, что информация — дефицитный ресурс. Мы решили, что нам под силу собирать лишь малую долю информации, и, собственно, этим и занимались. На что рассчитывали, то и получили. Мы даже разработали сложные методы использования как можно меньшего количества данных. В конце концов, одна из целей статистики — подтверждать крупнейшие открытия с помощью минимального количества данных. По сути, мы закрепили практику работы с неполной информацией в своих нормах, процессах и структурах стимулирования. Чтобы узнать, что представляет собой переход на большие данные, для начала заглянем в прошлое.
Не так давно привилегию собирать и сортировать огромные массивы информации получили частные компании, а теперь — и отдельные лица. В прошлом эта задача лежала на организациях с более широкими возможностями, таких как церковь или государство, которые во многих странах имели одинаковое влияние. Древнейшая запись о подсчетах относится к примерно 8000 году до н. э., когда шумерские купцы записывали реализуемые товары с помощью маленьких шариков глины. Однако масштабные подсчеты были в компетенции государства. Тысячелетиями правительства старались вести учет населения, собирая информацию.
Обратимся к переписям. Считается, что египтяне начали проводить их примерно в 3000 году до н. э. (как и китайцы). Сведения об этом можно найти в Ветхом и, конечно, Новом Завете. В нем упоминается о переписи, которую ввел кесарь Август, — «повелении сделать перепись по всей земле» (Евангелие от Луки 2:01). Это повеление и привело Иосифа с Марией в Вифлеем, где родился Иисус. В свое время Книга Судного дня (1086 год) — одно из самых почитаемых сокровищ Британии — была беспрецедентным, всеобъемлющим источником экономических и демографических сведений об английском народе. В сельские поселения были направлены королевские представители, которые составили полный перечень всех и вся — книгу, позже получившую библейское название «Судный день», поскольку сам процесс напоминал Страшный суд, открывающий всю подноготную человека.
Проведение переписей — процесс дорогостоящий и трудоемкий. Король Вильгельм I не дожил до завершения книги Судного дня, составленной по его распоряжению. Между тем существовал лишь один способ избавиться от трудностей, сопряженных со сбором информации, — отказаться от него. В любом случае информация получалась не более чем приблизительной. Переписчики прекрасно понимали, что им не удастся все идеально подсчитать. Само название переписей — «ценз»[23] (англ. census) — происходит от латинского термина censere, что означает «оценивать».
Более трехсот лет назад у британского галантерейщика по имени Джон Граунт появилась инновационная идея. Чтобы вывести общую численность населения Лондона во время бубонной чумы, он не стал подсчитывать отдельных лиц, а воспользовался другим способом. Сегодня мы бы назвали его статистикой. Новый подход давал весьма приблизительные результаты, зато показывал, что на основании небольшой выборки можно экстраполировать полезные знания об общей картине. Особое значение имеет то, как именно это делалось. Граунт просто масштабировал результаты своей выборки.
Его система стала известной, хотя позже и выяснилось, что расчеты могли быть объективными только по счастливой случайности. Из поколения в поколение метод выборки оставался далеко не безупречным. Итак, для переписи и подобных целей, связанных с большими данными, основной подход заключался в грубой попытке подсчитать все и вся.
Поскольку переписи были сложными, дорогостоящими и трудоемкими, они проводились лишь в редких случаях. Древние римляне делали это каждые пять лет, притом что население исчислялось десятками тысяч. А в Конституции США закреплено правило проводить переписи каждые десять лет, поскольку население растущей страны насчитывает миллионы. Но к концу XIX века даже это оказалось проблематичным. Возможности Бюро переписи населения не успевали за ростом данных.
Перепись 1880 года длилась целых восемь лет. Ее данные успели устареть еще до публикации результатов. По подсчетам, на подведение итогов переписи 1890 года требовалось 13 лет — смехотворный срок, не говоря уже о нарушении Конституции. В то же время распределение налогов и представительство в Конгрессе зависели от численности населения, поэтому крайне важно было своевременно получать точные данные.
Проблема, с которой столкнулось Бюро переписи населения США, напоминает трудности современных ученых и бизнесменов: поток данных стал непосильным. Объем собираемой информации превысил все возможности инструментов, используемых для ее обработки. Срочно требовались новые методы. В 1880-х годах ситуация оказалась настолько удручающей, что Бюро переписи населения США заключило контракт с Германом Холлеритом, американским изобретателем, на использование его идеи с перфокартами и счетными машинами для переписи 1890 года.[24]
С большим трудом ему удалось сократить время на сведение результатов с восьми лет до менее одного года. Это было удивительное достижение, которое положило начало автоматизированной обработке данных (и заложило основу будущей компании IBM). Однако такой метод получения и анализа больших объемов данных обходился все еще слишком дорого. Каждый житель Соединенных Штатов заполнял форму, из которой создавалась перфокарта для подсчета итогов. Трудно представить, как в таких условиях удалось бы провести перепись быстрее чем за десять лет. Но отставание определенно играло против нации, растущей не по дням, а по часам.