Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - Виктор Майер-Шенбергер 5 стр.


Эта информация всегда была очевидной, была на виду. Но анализ случайной выборки может не выявить такие закономерности. Анализ больших данных, напротив, показывает ее с помощью гораздо большего набора данных, стремясь исследовать всю совокупность боев. Это похоже на рыбалку, в которой нельзя сказать заранее, удастся ли что-то поймать и что именно.

Набор данных не всегда измеряется терабайтами. В случае сумо весь набор данных содержал меньше бит, чем обычная цифровая фотография. Но так как анализировались большие данные, в расчет бралось больше данных, чем при случайной выборке. В этом и общем смысле «большой» — скорее относительное понятие, чем абсолютное (в сравнении с полным набором данных).

В течение долгого времени случайная выборка считалась хорошим решением. Она позволяла анализировать проблемы больших данных в предцифровую эпоху. Однако при выборке часть данных теряется, как и в случае преобразования цифрового изображения или песни в файл меньшего размера. Наличие полного (или почти полного) набора данных дает гораздо больше свободы для исследования и разностороннего рассмотрения данных, а также более подробного изучения их отдельных особенностей.

Подходящий пример — камера Lytro. Она стала революционным открытием, так как применяет большие данные к основам технологии фотографии. Эта камера захватывает не только одну световую плоскость, как обычные камеры, но и около 11 миллионов лучей всего светового поля. Точное изображение, получаемое из цифрового файла, можно в дальнейшем изменять в зависимости от того, на какой объект кадра нужно настроить фокус. Благодаря сбору всех данных не обязательно настраивать фокус изображения изначально, ведь он настраивается на любой объект изображения после того, как снимок уже сделан. Снимок содержит лучи всего светового поля, а значит, и все данные, то есть «N = всё». В результате информация лучше подходит для «повторного использования», чем обычные изображения, когда фотографу нужно выбрать объект фокусировки, прежде чем нажать на кнопку затвора.

Поскольку большие данные опираются на всю или максимально возможную информацию, точно так же мы можем рассматривать подробности и проводить новый анализ, не рискуя четкостью. Мы проверим новые гипотезы на любом уровне детализации. Это позволяет обнаруживать случаи договорных боев в борьбе сумо, распространение вируса гриппа по регионам, а также лечить раковые заболевания, воздействуя целенаправленно на поврежденную часть ДНК. Таким образом, мы можем работать на небывало глубоком уровне понимания.

Следует отметить, что не всегда необходимы все данные вместо выборки. Мы все еще живем в мире ограниченных ресурсов. Однако все чаще целесообразно использовать все имеющиеся данные. И если ранее это было невозможно, то теперь — наоборот.

Подход «N = всё» оказал значительное влияние на общественные науки. Они утратили свою монополию на осмысление эмпирических данных, а анализ больших данных заменил ранее востребованных высококвалифицированных специалистов по выборкам. Общественные дисциплины во многом полагаются на выборки, исследования и анкеты. Но если данные собираются пассивно, в то время как люди заняты обычными делами, погрешности, связанные с исследованиями и анкетами, сходят на нет. Теперь мы можем собирать информацию, недоступную ранее, будь то чувства, высказанные по мобильному телефону, или настроения, переданные в твитах. Более того, исчезает сама необходимость в выборках.[36]

Альберт-Лазло Барабаши, один из ведущих мировых авторитетов в области сетей, и его коллеги исследовали взаимодействия между людьми в масштабе всего населения. Для этого они проанализировали все журналы анонимного мобильного трафика за четыре месяца, полученные от оператора беспроводной связи, который обслуживал около пятой части всего населения страны. Это был первый анализ сетей на общественном уровне, в котором использовался набор данных в рамках подхода «N = всё». Благодаря масштабу, который позволил учесть звонки миллионов людей в течение длительного времени, появились новые идеи, которые, скорее всего, не удалось бы выявить другим способом.[37]

Команда обнаружила интересную закономерность, не свойственную небольшим исследованиям: если удалить из сети людей, имеющих множество связей в сообществе, оставшаяся социальная сеть станет менее активной, но останется на плаву. С другой стороны, если из сети удалить людей, имеющих связи за пределами их непосредственного окружения, оставшаяся социальная сеть внезапно распадется, словно повредили саму ее структуру. Это стало важным, но совершенно неожиданным открытием. Кто бы мог подумать, что люди с большим количеством близких друзей настолько менее важны в структуре сети, чем те, у кого есть более отдаленные связи? Выходит, что разнообразие высоко ценится как в группе, так и в обществе в целом. Открытие заставило по-новому взглянуть на то, как следует оценивать важность людей в социальных сетях.

Мы склонны думать, что статистическая выборка — это своего рода непреложный принцип (такой, как геометрические правила или законы гравитации), на котором основана цивилизация. Однако эта концепция появилась менее ста лет назад и служила для решения конкретной задачи в определенный момент времени при определенных технологических ограничениях. С тех пор эти ограничения весьма изменились. Стремиться к случайной выборке в эпоху больших данных — все равно что хвататься за хлыст в эпоху автомобилей. Мы можем использовать выборки в определенных обстоятельствах, но они не должны быть (и не будут) доминирующим способом анализа больших наборов данных. Все чаще мы можем позволить себе замахнуться на данные в полном объеме.

Глава 3 Беспорядочность

Число областей, в которых можно использовать все имеющиеся данные, неуклонно растет, однако увеличение количества приводит к неточности. В наборы данных всегда закрадывались ошибочные цифры и поврежденные биты. Эту проблему следует попытаться решить хотя бы потому, что это возможно. Чего нам никогда не хотелось, так это мириться с такими ошибками, считая их неизбежными. В этом и состоит один из основных переходов от малых данных к большим.

В мире «малых данных» сокращение количества ошибок и обеспечение высокого качества данных становились естественным и необходимым толчком к поиску новых решений. Поскольку собиралась лишь малая часть информации, мы заботились о том, чтобы она была как можно более точной. Поколения ученых оптимизировали свои инструменты, добиваясь все большей точности данных, будь то положение небесных тел или размер объектов под микроскопом. В мире, где правили выборки, стремление к точности принимало характер одержимости, сбор лишь ограниченного числа точек данных неминуемо вел к распространению ошибок, тем самым снижая точность общих результатов.

На протяжении большей части истории наивысшие достижения человека были связаны с завоеванием мира путем его измерения. Одержимость точностью началась в середине ХІІІ века в Европе, когда астрономы и ученые взяли на вооружение как никогда точную количественную оценку времени и пространства — «меру реальности», выражаясь словами историка Альфреда Кросби.

Негласно считалось, что, если измерить явление, его удастся понять. Позже измерения оказались привязанными к научному методу наблюдения и объяснения — способности количественно измерять воспроизводимые результаты, а затем записывать и представлять их. «Измерить — значит узнать», — говорил лорд Кельвин. И это стало основным постулатом. «Знание — сила», — поучал Фрэнсис Бэкон. В то же время математики и те, кто позже стал актуарием или бухгалтером, разработали методы, которые сделали возможным точный сбор и регистрацию данных, а также управление ими.[38]

К ХІХ веку во Франции (в то время ведущей стране в мире по уровню развития науки) была разработана система строго определенных единиц измерения для сбора данных о пространстве, времени и не только. Другие страны перенимали эти стандарты. Дошло до того, что признанный во всем мире эталон единиц измерения стал закрепляться в международных договорах. Это явилось вершиной эпохи измерений. Лишь полвека спустя, в 1920-х годах, открытия в области квантовой механики навсегда разрушили веру в возможность достичь совершенства в измерениях. Тем не менее, не считая относительно небольшого круга физиков, инженеры и ученые не спешили расставаться с мыслью о совершенстве измерений. В деловой сфере эта идея даже получила более широкое распространение, по мере того как рациональные науки — математика и статистика — начали оказывать влияние на все области коммерческой деятельности.

Между тем множатся ситуации, в которых неточность воспринимается скорее как особенность, а не как недостаток. Взамен снижения стандартов допустимых погрешностей вы получаете намного больше данных, с помощью которых можно совершать новые открытия. При этом действует принцип не просто «больше данных — какой-то результат», а, по сути, «больше данных — лучше результат».

Нам предстоит иметь дело с несколькими видами беспорядочности. Это может быть связано с тем, что при добавлении новых точек данных вероятность ошибок возрастает. Следовательно, если, например, увеличить показатели нагрузки на мост в тысячу раз, возрастет вероятность того, что некоторые показатели будут ошибочными. Вы увеличите беспорядочность, сочетая различные типы информации из разных источников, которые не всегда идеально выравниваются. Или, определив причину жалоб, направленных в центр обработки заказов с помощью программного обеспечения для распознавания речи, и сравнив эти данные со временем, затраченным со стороны оператора на их обработку, можно получить несовершенную, но полезную общую картину ситуации. Кроме того, беспорядочность иногда связана с неоднородностью форматирования. В таком случае, прежде чем обрабатывать данные, их следует «очистить». «Существуют буквально тысячи способов упомянуть компанию IBM, — отмечает знаток больших данных Дж. Патил, — от IBM до International Business Machines и Исследовательского центра Т. Дж. Уотсона».[39] Беспорядочность может возникнуть при извлечении или обработке данных, поскольку путем преобразования мы превращаем их в нечто другое. Так, например, происходит, когда мы анализируем настроения в сообщениях Twitter, чтобы прогнозировать кассовые сборы голливудских фильмов. А беспорядочность сама по себе… беспорядочна.

Представьте себе, что вам нужно измерить температуру в винограднике. Если у вас только один датчик температуры на весь участок земли, необходимо убедиться, что он работает точно и непрерывно. Если же для каждой из сотен лоз установлен отдельный датчик, вероятно, рано или поздно какой-то из них станет предоставлять неправильные данные. Полученные данные могут быть менее точными (или более «беспорядочными»), чем от одного точного датчика. Любой из отдельно взятых показателей может быть ошибочным, но в совокупности множество показателей дадут более точную картину. Поскольку набор данных состоит из большего числа точек данных, его ценность гораздо выше, и это с лихвой компенсирует его беспорядочность.

Теперь рассмотрим случай повышения частоты показателей. Если мы возьмем одно измерение в минуту, то можем быть уверены, что данные будут поступать в идеально хронологическом порядке. Измените частоту до десяти или ста показателей в секунду — и точность последовательности станет менее определенной. Так как информация передается по сети, запись может задержаться и прибыть не по порядку либо попросту затеряться. Информация получится немного менее точной, но ввиду большого объема данных отказаться от строгой точности вполне целесообразно.

В первом примере мы пожертвовали точностью отдельных точек данных в пользу широты, получив взамен детали, которые не удалось бы обнаружить другим путем. Во втором случае отказались от точности в пользу частоты, зато увидели изменения, которые иначе упустили бы из виду. Такие ошибки можно устранить, если направить на них достаточно ресурсов. В конце концов, на Нью-Йоркской фондовой бирже производится 30 000 сделок в секунду, и правильная последовательность здесь чрезвычайно важна. Но во многих случаях выгоднее допустить ошибку, чем работать над ее предотвращением.

Мы можем согласиться с беспорядочностью в обмен на масштабирование. Один из представителей консалтинговой компании Forrester однажды выразился так: «Иногда два плюс два может равняться 3,9. И это достаточно хорошо».[40] Конечно, эти данные не могут быть абсолютно неправильными, и мы готовы в некоторой степени пожертвовать точностью в обмен на понимание общих тенденций. Большие данные преобразуют цифры в нечто более вероятностное, чем точность. В этом процессе обществу придется ко многому привыкнуть, столкнувшись с рядом проблем, которые мы рассмотрим в этой книге. Но на сегодняшний день стоит просто отметить, что при увеличении масштаба беспорядочность неизбежна, и с этим нужно смириться.

Подобный переход можно заметить в том, в какой степени увеличение объема данных важнее других усовершенствований в вычислительных технологиях. Всем известно, насколько вычислительная мощность выросла за эти годы в соответствии с законом Мура, который гласит, что число транзисторов на кристалле удваивается примерно каждые два года. В результате компьютеры стали быстрее, а память — объемнее. Производительность алгоритмов, которые управляют многими нашими системами, также увеличилась, но осталась несколько в тени. По некоторым данным, вычислительные алгоритмы улучшились примерно в 43 000 раз в период между 1988 и 2003 годами — значительно больше, чем процессоры в соответствии с законом Мура.[41] Однако многие достижения, наблюдаемые в обществе благодаря большим данным, состоялись не столько за счет более быстрых чипов или улучшенных алгоритмов, сколько за счет увеличения количества данных.

Так, шахматные алгоритмы изменились лишь немного за последние несколько десятилетий, так как правила игры в шахматы полностью известны и жестко ограничены. Современные компьютерные программы по игре в шахматы играют гораздо лучше, чем их предшественники, потому что лучше просчитывают свой эндшпиль.[42] И это им удается просто потому, что в систему поступает больше данных. Варианты эндшпиля при оставшихся шести (и менее) фигурах на шахматной доске полностью проанализированы, а все возможные ходы («N = всё») представлены в виде массивной таблицы, которая в несжатом виде заполнила бы более терабайта данных. Благодаря этому компьютеры могут безупречно вести все важные эндшпили. Ни один человек не сможет переиграть систему.[43]

То, насколько можно усовершенствовать алгоритмы, увеличив количество данных, убедительно продемонстрировано в области обработки естественного языка — способа, с помощью которого компьютеры распознают слова, используемые нами в повседневной речи. Примерно в 2000 году Мишель Банко и Эрик Брилл из исследовательского центра Microsoft Research поставили задачу улучшить средство проверки грамматики — элемент программы Microsoft Word. Перед ними было несколько путей: улучшение существующих алгоритмов, поиск новых методов или добавление более сложных функций. Прежде чем выбрать один из них, они решили посмотреть, что будет, если существующие методы применить к гораздо большему количеству данных. Большинство исследований по машинному обучению алгоритмов полагались на корпусы,[44] состоящие из миллиона слов, а то и меньше. Поэтому Банко и Брилл выбрали четыре алгоритма общего назначения и ввели в них на три порядка больше данных: 10 миллионов слов, затем 100 миллионов и, наконец, миллиард.

Результаты поразили. Чем больше данных подавалось на входе, тем лучше были результаты работы всех четырех типов алгоритмов. Простой алгоритм, который хуже всех справлялся с половиной миллиона слов, показал наилучший результат, обработав миллиард слов. Степень точности возросла с 75 до более чем 95%. И наоборот, алгоритм, который лучше всех справлялся с небольшим объемом данных, показал наихудший результат при больших объемах. Следует отметить, что при этом его результат, как и результат остальных алгоритмов, значительно улучшился: с 86 до 94% точности. «Эти результаты показывают, что нам, возможно, понадобится пересмотреть свое представление о том, на что стоит тратить время и средства: на разработку алгоритмов или на развитие корпусов», — отметили Банко и Брилл в одной из своих научных статей на эту тему.[45]

Итак, чем больше данных, тем меньше затрат. А как насчет беспорядочности? Спустя несколько лет после того, как Банко и Брилл начали активно собирать данные, исследователи компании Google, их конкурента, стали рассуждать в том же направлении, но еще более масштабно. Они взялись тестировать алгоритмы, используя не миллиард слов, а корпус из целого триллиона слов. Целью Google была не разработка средства проверки грамматики, а еще более сложная задача — перевод.

Концепция так называемого «машинного» перевода появилась на заре вычислительной техники, в 1940 году, когда устройства состояли из вакуумных ламп и занимали целую комнату. Идея стала особенно актуальной во времена холодной войны, когда в руки США попало огромное количество письменных и устных материалов на русском языке, но не хватало человеческих ресурсов для их быстрого перевода.

Назад Дальше