За последние десять лет мне довелось несколько раз побывать на Пятом континенте. Перелет из Москвы в Сидней с пересадкой в Сингапуре или Гонконге достаточно утомительный и занимает 27 часов. Ощущение такое, что кажется, будто ты летишь на другую планету. Трудно себе представить, что Австралия когда-то соединялась с Евразией. Тем не менее так и было, потому что 270-290 миллионов лет назад эти континенты образовывали единое целое – суперконтинент Пангею. Сегодня же их разделяют просторы Мирового океана. Однако все меняется на поверхности нашей планеты. По прогнозам геодинамиков, через 50-60 миллионов лет все континенты вновь соберутся вместе, а океаны изменят свою конфигурацию.
Геологи долгое время полагали, что Пангея была только один раз в истории Земли. Но на самом деле это не совсем так. Сделанные нами в 70-80-х годах прошлого века совместно Л.П. Зоненшайном реконструкции океанов и континентов в истории нашей планеты показали, что Пангея была не единична. Время от времени континенты собирались вместе, закрывая разъединяющие их океаны, а потом опять распадались. Причем интересно, что интервал времени между этими пангеями или палеопангеями, которых было несколько в истории Земли уже и миллиарды лет назад, составлял примерно 600 миллионов лет. Причем когда существовали суперконтиненты, то ясно, что на одной стороне были суперконтиненты, а на другой должен был существовать такой же суперокеан. Его и называли Панталасса, Всеобщий океан. Иногда его еще называют Палеотихим океаном.
Когда суперконтиненты распадались, то в зазорах между их обломками возникали вторичные океаны. К этому типу относятся современные океаны – Атлантический, Индийский и Северный Ледовитый. До сих пор среди ученых, среди геофизиков, геологов, идут большие споры по поводу возраста дна Тихого океана. Дело в том, что при глубоководном океаническом бурении в пределах Тихого океана были вскрыты самые древние породы юрского периода, возраст которых составляет 160-170 миллионов лет. Считали, что, возможно, Тихий океан такой же относительно не старый, как и Атлантический океан, где у побережий Африки и Америки были обнаружены при бурении породы примерно такого же возраста.
Но изучение краев континентов, обрамляющих Тихий океан, прежде всего Камчатки, с другой стороны – Кордильер, или более южных участков – Австралии, наиболее восточных участков ее, контактирующих уже с современным Тихим океаном, показало, что там были найдены так называемые офиолиты – древние породы океанического дна. Возраст этих офиолитов, а значит, и возраст древнего дна Тихого океана достигал 600, даже 700 миллионов лет. Офиолиты существуют практически везде, где есть складчатые горы. Их находят и на Южном Урале, и в Альпах, и в горах Кавказа.
Несколько лет назад я побывал с геологической экспедицией на Кипре. Над столицей этого островного государства Никосией возвышается Тродосский хребет. На самой вершине Тродоса очень много офиолитов. Это – древнее дно океана Тетис, которое после удара Африки о Европу оказалось на высоте полутора тысяч метров. Можно себе представить, какой мощности было столкновение двух континентов.
Точно так же, по таким же реликтам офиолитов, судят о существовании и других палеоокеанов, например, о существовании так называемого Палеоазиатского океана, который когда-то отделял Восточную Европу от Сибири и Сибирь от Китая. Когда-то существовал такой океан, но закрылся он значительно раньше, – 300 с чем-то миллионов лет назад.
Образование новых океанов, так называемый рифтогенез с расколом континентов, происходит и на территории России. Один из первых кандидатов в будущие океаны – это Байкал, самое большое озеро в мире. По его дну проходит глубочайшая рифтовая трещина и наблюдаются такие же линейные полосчатые магнитные аномалии, как в настоящем океане. По этой рифтовой трещине, которая на юг уходит в Монголию, а на севере тянется почти до устья Лены, начинает раскрываться новый океан, который, к сожалению, отделит наш Дальний Восток от остальной части Сибири. Другой пример – Мертвое море в Израиле. Вдоль линии Мертвого моря, озера Кинерет и реки Иордан начинает раскрываться трещина, так называемый Мертвоморский трансформный разлом, который затем уходит в Акабский залив Красного моря. Там формируется новый океан, который отделит Израиль от его арабских соседей. Существуют и другие подобные трещины на поверхности Земли. Таким образом, прямо на наших глазах происходит рождение новых океанов.
Сама тема «рождение и гибель океанов» только сейчас стала безопасной. Я уже упоминал о доносе, написанном на группу авторов, в том числе на меня, в Академию наук СССР. Тем не менее… Вслед за великим Галилеем можно сказать: «И все-таки она вертится!» Континенты на земном шаре движутся, а океаны рождаются и погибают.
Переселится ли человек в океан?
Может ли человек переселиться в глубины океанов и морей? Не просто плавать по их поверхности, а переселиться туда навсегда и жить там наравне с многочисленными обитателями океанских глубин, к чему призывали писатели-фантасты. Такие, как Жюль Верн, Артур Конан-Дойл, наконец, наш соотечественник Александр Беляев в своем знаменитом романе «Человек-амфибия», главный герой которого был способен жить под водой. Вопрос отнюдь не праздный. Мы живем на покрытой водами Мирового океана части поверхности нашей планеты – суше. Однако она занимает лишь одну пятую часть общей площади земного шара. На поверхности нашей планеты запасы пищи и полезных ископаемых уже во многом истреблены, серьезно пострадала экология. Может быть, стоит переселиться в океан навсегда, решив грядущие проблемы человечества?
Попытки проникнуть в океанские глубины на протяжении истории человеческой цивилизации предпринимались неоднократно. Первым подводным аппаратом стал водолазный колокол, описанный еще в V веке до нашей эры древнегреческим историком Геродотом (около 484 – около 425 до н. э.). Такие аппараты могли погружаться на глубину до 20 метров и использовались главным образом для поиска затонувших сокровищ.
Одним из первых знаменитых водолазов по праву может считаться Александр Македонский, который около 330 года до нашей эры опустился на дно реки в специальной бочке. А чуть ли не первым изобретателем подводной лодки ученые считают Леонардо да Винчи. Около 1500 года гений эпохи Возрождения оставил чертежи подводного аппарата. Построить субмарину по этим эскизам удалось только в 1620 году. Голландский изобретатель Корнелиус Дреббель (1572-1633) обернул деревянную гребную шлюпку в кожу и добавил трубу, чтобы обеспечить субмарину воздухом. Конечно, тогда еще не было никаких двигателей, их заменили весла, находившиеся по бокам корпуса в кожаных прокладках, которые защищали от проникновения воды внутрь лодки. Первое подводное путешествие Дреббель предпринял по Темзе. В реке, на которой стоит Лондон, вместе с 12 гребцами он пребывал под водой в течение трех часов.
Уже в конце XIX века появились первые подводные лодки, которые погружались не более чем на сто метров. В XX столетии удалось увеличить глубину погружения субмарин до трехсот метров и больше.
Первый регулятор подачи воздуха с поверхности был запатентован в 1866 году французским горным инженером Бенуа Рукейролем, который незадолго до этого изобрел регулятор утечки сжатого воздуха для использования в наполненных загрязненным воздухом шахтах. Этот прибор состоял из контейнера со сжатым воздухом и шланга. Позже Огюст Денейруз адаптировал его для автоматической подачи воздуха под водой. Регулятор работал по принципу сухой и мокрой камер, мембраны и клапана. Система приводилась в движение вдохом (пониженное давление) и выдохом (повышенное давление). Регулятор был способен делать давление в дыхательном аппарате равным окружающему давлению. Именно этот аппарат Жюль Верн описал в своем знаменитом романе «Двадцать тысяч лье под водой».
В 1878 году Генри Флюсс изобрел первый удачный подводный аппарат с замкнутой схемой дыхания, использующий чистый кислород. Однако вскоре у водолазов возникли новые проблемы, так как в то время не было известно, что чистый кислород, вдыхаемый под давлением, становится токсичным на глубине более шести метров и время его вдыхания должно быть ограничено. В 1910-е годы был усовершенствован регулятор подачи кислорода и изготовлены баллоны, которые могли выдерживать давление газа до 200 атмосфер. Это позволило автономному аппарату с замкнутой схемой Флюсса стать штатным спасательным оборудованием для подводного флота Великобритании.
В 1878 году Генри Флюсс изобрел первый удачный подводный аппарат с замкнутой схемой дыхания, использующий чистый кислород. Однако вскоре у водолазов возникли новые проблемы, так как в то время не было известно, что чистый кислород, вдыхаемый под давлением, становится токсичным на глубине более шести метров и время его вдыхания должно быть ограничено. В 1910-е годы был усовершенствован регулятор подачи кислорода и изготовлены баллоны, которые могли выдерживать давление газа до 200 атмосфер. Это позволило автономному аппарату с замкнутой схемой Флюсса стать штатным спасательным оборудованием для подводного флота Великобритании.
Несмотря на недостатки в применении и риск кислородного отравления, наибольшей популярностью пользовались аппараты с замкнутой схемой дыхания. Во время Второй Мировой войны они использовались всеми воюющими сторонами. В то же время два француза, морской офицер и инженер, работали над изобретением аппарата с открытой схемой дыхания на сжатом воздухе. Это были капитан Жак-Ив Кусто (1910-1997) и Эмиль Ганьян (1900-1979). В сложных условиях оккупированной немцами Франции, в 1943 году они изобрели первый безопасный и эффективный аппарат для дыхания под водой, названный аквалангом, который в дальнейшем Кусто успешно использовал для погружения на глубину до 60 метров без каких-либо вредных последствий.
Слово «акваланг» является торговой маркой и во многих странах мира обозначает только продукцию фирмы Aqualung, основанной Кусто и Ганьяном. В СССР же оно стало общеупотребительным, обозначающим класс дыхательных аппаратов. Хотя современные поклонники путешествий по океанским глубинам с аквалангом и маской уже предпочитают называть себя не аквалангистами, а дайверами.
Вместе с подводным флотом развивались и аварийно-спасательные службы. Пока речь шла о глубине до 60 метров, проблем у водолазов были связаны в основном с подачей воздуха и с неисправным снаряжением. О глубине, смертельно опасной для человека, впервые заговорили в 1946 году, когда трагически погиб Морис Фарг, лучший водолаз из «Группы подводных изысканий Жака-Ива Кусто». Во время рекордного погружения с аквалангом на глубину 91 метра он просигналил «Tout va bien» – «Все в порядке». Через несколько минут его вытащили на поверхность. Ныряльщик был без сознания и с вынутым изо рта загубником. Несмотря на двенадцатичасовые попытки реанимации, Фарг умер, не приходя в сознание. Что же случилось с французским аквалангистом? Может быть, давление пресса в девяносто метров водной толщи оказалось чрезмерным, и он был попросту раздавлен?
Давление, конечно, существует и равномерно объемно сжимает ткани организма. Но поскольку наш организм более чем на 70 % состоит из воды, эта система практически несжимаема, а на двух километрах под водой ее объем уменьшается менее чем на один процент. Причиной гибели Мориса Фарга стал слишком быстрый подъем с глубины на поверхность. В человеческой крови растворено огромное количество азота. Когда резко падает давление, азот переходит в газообразное состояние, образуя пузырьки, и в узких местах кровеносных сосудов может их разорвать. Что-то похожее на этот процесс происходит, когда мы открываем бутылку шампанского. Человек же буквально взрывается. Единственное, что может помочь водолазу в такой ситуации, – декомпрессия, то есть погружение на ту же глубину, чтобы азот вновь растворился в крови. Для этого были созданы декомпрессионные камеры, в которых создается давление, аналогичное тому, при котором человек находился под водой.
Однако не только азот, растворенный в человеческом организме, может стать причиной гибели водолаза. Чистый кислород, который используют для дыхания, на глубине свыше 20 метров становится нейротоксическим ядом и вызывает судороги. А если дышать смесью азота и кислорода, то начиная с глубины 60 метров и дальше у человека возникает состояние «азотного наркоза». Для обеспечения нормального физического состояния человека под водой была разработана специальная воздушная смесь, где азот стал заменяться гелием, коэффициент растворимости которого значительно ниже. На глубинах до 700 метров гелий не вызывает «наркоза».
В Южном отделении Института океанологии в Геленджике существует специальный гипербарический комплекс «Кролик». Сердце его – гипербарическая камера. В таких помещениях водолазы проходят подготовку перед погружением в открытую воду на большие глубины. В камеру помещается водолаз, и затем под определенным давлением, которое соответствует той глубине, на которую человек должен будет выйти в воду, подается кислородно-гелиевая смесь. Постепенно азот из человеческой крови вытесняется гелием. Теперь водолаз готов к погружению и может переходить в водолазный колокол и опускаться на глубину. Свое название этот комплекс получил из-за того, что людям, как подопытным кроликам, приходилось сидеть в его барокамерах достаточно долгое время.
На «Кролике» отрабатывали и проверяли режимы погружения и всплытия – компрессии и декомпрессии. В те поры активно занимались подводными исследованиями не только наш институт, но, естественно, и военные, закрытые институты. Получить информацию от них официальным путем было практически невозможно. Тогда наши специалисты пригласили своих военных коллег с женами и детьми на отдых прямо на пляж Голубой бухты геленджикского отделения нашего института. В непринужденной обстановке здесь, без всякой переписки, обменивались информацией различного характера, что немало способствовало развитию серьезных подводных технологий. Поскольку человек не может даже на отдыхе просто лежать и ничего не делать, тем более человек, влюбленный в свою профессию, то, отлежав два-три часа на пляже, гости начинали спрашивать: «Ну, ладно, что вы тут делаете? Так? Ну, мужики, нет, вот это бы я делал вот так и вот так». Такие неформальные рабочие отношения, взаимовыручка позволили построить великолепный гипербарический комплекс, в котором проводились уникальные эксперименты. Было осуществлено рекордное погружение на 450 метров на кислородно-гелиевой смеси, а также на 410 метров – на кислородно-неоновой.
В начале 1980-х годов такой гипербарический комплекс вместе с водолазным колоколом для погружения водолазов был смонтирован на борту научно-исследовательского судна «Витязь» последнего поколения. В «лихие девяностые» комплекс, как и сам корабль, был полностью расхищен. Но я вспоминаю, как он прекрасно работал в 1982 году, в первом рейсе «Витязя».
Готовые к погружению водолазы переходят из гипербарической камеры в герметично соединенный с нею через специальный люк водолазный колокол. Колокол с помощью специального спускового устройства опускается с борта судна на глубину, и водолазы выходят через другой люк внизу в открытую воду. Закончив работу, они возвращаются в колокол. Нижний люк задраивается, колокол поднимается наверх на борт судна, и через верхний люк, герметично соединенный с гипербарической камерой, водолазы переходят в нее. После этого в течение длительного времени (иногда нескольких дней) в камере проводится постепенное снижение давления – декомпрессия, чтобы опять приспособить организм человека к нормальному атмосферному давлению.
В 1978 году в 21-м рейсе научно-исследовательского судна «Дмитрий Менделеев» мне впервые посчастливилось принять участие в одном из первых погружений на океанское дно в подводном обитаемом аппарате «Пайсис», незадолго до этого построенном по заявке нашего института в Канаде. В свое первое погружение я попал случайно, дуриком. Прибывшие на борт «Менделеева» лихие наши подводные пилоты во главе с Анатолием Сагалевичем и Александром Подражанским, уже набравшие немалый опыт погружений на «Пайсисах» на озере Байкал, любили петь песни под гитару, в том числе и мои. Толя Сагалевич и сам писал песни. Подружившись со мной, Сагалевич и Подражанский начали требовать, чтобы я написал для них песню подводного пилота. В ответ я им объяснил, что умею писать только «с натуры». «Возьмете в погружение – напишу, а нет – так ничего не получится».
Это было время, когда специализированных судов – носителей подводных аппаратов еще не было, и канадский «Пискес» (в переводе с латинского – «рыба»), который у нас почему-то назывался «Пайсис», опускался прямо с борта «Дмитрия Менделеева». Мне с большим трудом удалось попасть в число научных наблюдателей. Уже опытные подводные пилоты Александр Подражанский, Анатолий Сагалевич и Владимир Кузин относились к нам, новичкам, покровительственно и несколько насмешливо. Еще бы – у них за плечами были многочисленные погружения у берегов Канады и на Байкале. Об этом писали все газеты. Они были настоящими героями, подводными «волками», а мы – робкими «чечако». Впрочем, Сагалевич, например, остается таким «волком» и до сих пор, хотя ему уже за семьдесят. Как главный пилот глубоководного обитаемого аппарата он совершил более трехсот погружений, в том числе два на глубины свыше шести километров, в общей сложности проведя под водой более четырех тысяч часов. На рубеже веков возглавляемый им коллектив подводных исследователей на уникальных аппаратах «Мир-1» и «Мир-2» провел в водах Северной Атлантики серию глубоководных киносъемок, позволивших знаменитому голливудскому режиссеру Джеймсу Кэмерону создать «оскароносный» фильм «Титаник», а также документальные ленты о легендарном лайнере и потопленном британцами в 1941 году флагмане немецкого флота линкоре «Бисмарк», лежащем на глубине 4700 метров. В 2008 году Анатолий был удостоен звания Героя России за погружение на глубину более четырех километров в точке географического Северного полюса.