После того как 4 июля на БАКе объявили об открытии бозона Хиггса, были предприняты сотни попыток объяснить, что это все должно означать. Сложность проблемы состоит главным образом в том, что на самом деле интересен не столько сам бозон Хиггса, сколько поле Хиггса, которое порождает этот бозон. Из физики, точнее из квантовой теории поля – основного свода законов физиков элементарных частиц, которым ученые неукоснительно следуют, – известно, что все возможные частицы на самом деле возникают из полей. Но квантовой теории поля детей в средней школе не учат. И в популярных книгах по физике она не часто обсуждается. Мы рассказываем о частицах, квантовой механике и теории относительности, но редко вытаскиваем на поверхность лежащие в основе всех этих теорий волшебные свойства квантовой теории поля. Однако, когда речь заходит о бозоне Хиггса, избежать обсуждения решающей роли поля во всех этих процессах уже невозможно.
Когда ученые говорят о «поле», имеется в виду «что-то, что имеет некоторую величину в каждой точке пространства». Температура земной атмосферы является полем – в каждой точке на поверхности Земли (или на любой высоте над поверхностью) воздух имеет определенную температуру. Плотность и влажность атмосферы также являются полями. Но это не фундаментальные поля – это просто свойства самого воздуха. Электромагнитное или гравитационное поля, напротив, считаются фундаментальными. Они не сделаны ни из чего другого, они – то, из чего состоит мир. Согласно квантовой теории поля, абсолютно все сделано из одного поля или комбинации полей, а то, что мы называем «частицами», – крошечные колебания этих полей.
И здесь как раз выходит на сцену «квантовая» часть квантовой теории поля. Можно долго рассказывать о квантовой механике – возможно, самой таинственной теории из всех, когда-либо придуманных человеком, но нам понадобится от нее только одно простое заключение (но с которым так трудно смириться, что даже великий Эйнштейн его не принял): мир, на который мы смотрим, сильно отличается от того, каким он является на самом деле.
Физик Джон Уилер однажды поставил задачу: как наилучшим образом объяснить квантовую механику, используя не более пяти слов? В современном мире технически легко получить варианты ответов на любые вопросы, допускающие короткий ответ. Нужно просто отправить запрос в твиттер, размер сообщений в котором ограничивается 140 символами. Когда я задал в «Твиттере» этот вопрос о квантовой механике, лучший ответ прислал Аатиш Бхатия (@ aatishb): «Не смотришь – волны, смотришь – частицы». Это краткое изложение квантовой механики.
Каждая частица в составе Стандартной модели, если копнуть глубже, оказывается волной колебаний определенного поля. Фотоны – переносчики электромагнитного взаимодействия – это колебания электромагнитного поля, распространяющиеся в пространстве. Гравитоны – это колебания гравитационного поля, глюоны – колебания глюонного поля и так далее. Даже фермионы – частицы вещества – это колебания соответствующего фермионного поля. Существует поле электронов, поле верхних кварков и поля всех других видов частиц. Подобно тому как звуковые волны распространяются в воздухе, колебания распространяются в квантовых полях, и мы их наблюдаем в виде частиц.
Немного раньше мы упомянули о том, что частицы с малой массой занимают больше места, чем частицы с большими массами. Это происходит потому, что частицы на самом деле не маленькие шарики с однородной плотностью, а квантовые волны. Каждая волна имеет длину, и это дает нам общее представление о ее размерах. Длина волны еще и определяет ее энергию: чтобы создать волну с меньшей длиной, требуется больше энергии, так как ее частота больше, и волне приходится меняться от одной точки к другой быстрее. А масса, как давно научил нас Эйнштейн, это всего лишь форма существования энергии. Так что чем меньше масса, тем меньше энергия, тем больше длина волны, тем больше размер. А чем больше масса, тем больше энергия и тем меньше длина волны и меньше размеры.
Уходим от нуля
Поля в каждой точке пространства характеризуются некими величинами. В пустом пространстве эти величины, как правило, равны нулю. Под «пустым» мы подразумеваем то, что оно «настолько пустое, насколько возможно», или – более конкретно – «с минимальным возможным значением энергии». Согласно этому определению, в действительно пустом пространстве такие поля, как гравитационное и электромагнитное, принимают нулевое значение. Если они имеют ненулевое значение, значит, в них запасена энергия, и, следовательно, пространство уже не пустое. Конечно, согласно принципу неопределенности квантовой механики, во всех полях имеются крошечные колебания, но эти колебания происходят вокруг некоторого среднего значения, обычно равного нулю.
Поле Хиггса не такое. Хотя оно и напоминает другие поля и тоже может быть нулевым или принимать некоторое другое значение, поле это не хочет быть равным нулю – оно хочет принять определенное постоянное ненулевое значение везде во всей Вселенной. Энергия поля Хиггса имеет меньшую величину при ненулевом значении поля, чем при нулевом.
В результате пустое пространство оказывается заполненным полем Хиггса. Не сложным набором колебаний, которым соответствует набор отдельных бозонов Хиггса, а именно постоянным полем, составляющим постоянный фон. Это то самое вездесущее поле, которое есть в каждой точке Вселенной и которое делает слабое взаимодействие таким, как оно есть, и наделяет элементарные частицы-фермионы массой. Бозон Хиггса, обнаруженный на БАКе, является колебанием этого поля вокруг среднего значения.
Поскольку частица Хиггса бозон, она связана с силой природы. Две массивные частицы могут пролететь друг мимо друга и провзаимодействовать с помощью обмена бозонами Хиггса точно так же, как две заряженные частицы могут взаимодействовать друг с другом путем обмена фотонами. Но не сила Хиггса наделяет частицы массой, и не вокруг нее поднят весь этот шум. Поле Хиггса, присутствующее везде в качестве фона, – вот что дарит частицам массу. Именно оно обеспечивает среду, через которую движутся другие частицы, и в процессе этого движения влияет на их свойства.
Бозон Хиггса. Основная разница между полем Хиггса и другими полями в том, что его среднее значение в вакууме не равно нулю. Во всех полях из-за имеющихся в квантовой механике соотношений неопределенности возникают малые колебания. Большие колебания воспринимаются нами как частицы.
Перемещаясь в пространстве, мы оказываемся окружены полем Хиггса и движемся в нем. Подобно рыбе, плывущей в воде, мы обычно не замечаем этого поля, но именно оно привносит в Стандартную модель всю присущую ей таинственность.
Промежуточные итоги
Существует большая, глубокая и сложная физика, связанная с концепцией бозона Хиггса. Но прямо сейчас просто подытожим наши познания о том, как поле Хиггса работает и почему оно столь важно. Приступим сразу.
• Мир состоит из полей, пронизывающих все пространство, эти поля мы ощущаем по их колебаниям, которые воспринимаются нами как частицы. Большинство знакомо с электрическими и гравитационными полями, но в соответствии с квантовой теорией поля даже такие частицы, как электроны и кварки, на самом деле представляют собой колебания соответствующих полей.
• Бозон Хиггса есть колебание поля Хиггса, так же как фотон – колебание электромагнитного поля.
• Четыре известные силы природы порождаются разного рода симметриями – то есть изменениями, которые мы можем внести в ситуацию, не повлияв принципиально на результат. (На первый взгляд кажется нелепым, что «изменения, которые не влияют на результат», приводят непосредственно к появлению «силы природы «…но это так, и это было одним из поразительных открытий физики XX века.)
• Симметрия иногда бывает скрытой и потому невидимой для нас. Физики часто говорят, что скрытые симметрии «нарушены», но все еще присутствуют в основных законах физики – просто они завуалированы в нашей каждодневной жизни.
• В частности, слабое ядерное взаимодействие вытекает из определенного вида симметрии. Если бы эта симметрия была ненарушенной, элементарные частицы не имели бы массу и все летали бы со скоростью света.
• Но большинство элементарных частиц имеют массу и не летают со скоростью света, значит, симметрия слабых взаимодействий нарушена.
• Если пространство абсолютно пусто, это означает, что большинство полей выключено, то есть равно нулю. Если поле не равно нулю в пустом пространстве, оно может нарушить какую-нибудь симметрию. В случае слабых взаимодействий эту работу выполняет поле Хиггса. Без него Вселенная была бы совершенно другой.
• Если пространство абсолютно пусто, это означает, что большинство полей выключено, то есть равно нулю. Если поле не равно нулю в пустом пространстве, оно может нарушить какую-нибудь симметрию. В случае слабых взаимодействий эту работу выполняет поле Хиггса. Без него Вселенная была бы совершенно другой.
Ну как, понятно? Признаться, все это действительно трудно сразу воспринять. Но, поверьте мне, все встанет на свои места, когда мы закончим путешествие по остальным главам.
Следующие главы будут посвящены обсуждению идей, которые объясняют механизм Хиггса и методики, использованные при экспериментальных поисках бозона Хиггса. Начнем мы с краткого обзора частиц и сил, укладывающихся в стройную конструкцию Стандартной модели, затем проследим, какие хитроумные приемы применяют физики, чтобы открыть новые частицы, как они используют новейшие технологии и смекалку. Затем опять вернемся к теории, дабы разобраться в полях, симметриях и в том, как поле Хиггса прячет от нас симметрии. И наконец, я расскажу, как бозон Хиггса был обнаружен, как новость об этом облетела мир, кто получил награду и что это значит для будущего.
Становится понятным, почему Леон Ледерман полагал, что название «частица Бога» очень подходит бозону Хиггса. Этот бозон является скрытым элементом машинерии, с помощью которой Вселенная показывает нам фокус, раздавая разным частицам разные массы и делая физику элементарных частиц такой интересной. Без бозона Хиггса замысловатое разнообразие Стандартной модели свелось бы к безликому набору очень похожих частиц без определенных свойств, а все фермионы оказались бы практически безмассовыми. В такой Вселенной не было бы ни атомов, ни химии, ни нас. Бозон Хиггса – это то, что вдохнуло во Вселенную жизнь в самом прямом смысле слова. Если бы требовалось выбрать единственную частицу, заслуживающую такого высокого звания, без сомнения, это был бы бозон Хиггса.
Глава 3 Атомы и частицы
Мы разрываем материю на части, чтобы найти основные кирпичики, из которых она построена, – кварки и лептоны.
В начале 1800-х годов немецкий терапевт Самуэль Ганеман заложил основы гомеопатии. Разочаровавшись в эффективности методов тогдашней медицины, Ганеман разработал новый подход, основанный на принципе «лечения подобного подобным». Ганеман утверждал, что лечить болезнь можно в первую очередь с помощью субстанции той же природы, что и субстанция, вызвавшая данный недуг, нужно только ее правильно приготовить. Способ приготовления назывался потенцированием и состоял в последовательном разбавлении вещества водой и энергичного встряхивания раствора после каждого акта разбавления. Обычно при разбавлении смешивают одну часть вещества с 99 частями воды. Гомеопатические препараты так и готовятся: разбавляют, встряхивают, еще раз разбавляют, еще раз встряхивают, и так 200 раз.
Недавно Криспиан Яго – профессиональный консультант по программному обеспечению и по совместительству член общества скептиков-любителей из Хемпшира – решил публично продемонстрировать нелепость гомеопатии как медицинского метода. Для этого он решил применить метод последовательного разбавления, использовав легкодоступное вещество – собственную мочу. Полученный раствор он затем выпил. Поскольку он был не очень терпеливым, то разбавлял мочу только 30 раз. Для наукообразности он назвал мочу не «мочой» (urine), а «писой» (piss), а затем заявил, что разработал лекарство для лечения состояния «being pissed», что переводится либо как «быть рассерженным» (на американском английском), либо как «быть пьяным» (на британском английском). И естественно, выложил эти результаты для широкого обозрения в виде скандального видеоролика на сайте YouTube.
У Яго были веские причины не переживать из-за того, что придется пить мочу, разведенную 30 раз в соотношении 1:99, поскольку к тридцатому разведению полученный таким образом раствор вообще не содержал первоначального вещества. Не просто «незначительного количества», а на самом деле ничего – конечно, если процесс разведения был проделан достаточно аккуратно.
Объясняется это тем, что все в окружающем нас мире – моча, алмазы, картофель-фри, действительно все – состоит из атомов, как правило, объединенных в молекулы. Эти молекулы – самые мелкие кирпичики вещества, которые все еще можно считать частичками этого вещества. По отдельности два атома водорода и один атом кислорода – только атомы, в соединении друг с другом в молекуле они становятся водой.
Поскольку все вещества состоят из атомов и молекул, мы не можем разбавлять вещество бесконечно и считать, что оно все еще сохраняет свою идентичность. Чайная ложка мочи содержит примерно 1024 молекул. Если мы один раз ее разбавим, смешав 1 часть мочи с 99 частями воды, у нас останется 1022 молекул мочи. Разведем два раза, и у нас останется 1020 молекул. К тому времени, когда мы разбавим двенадцать раз, в ложке раствора останется в среднем только одна молекула исходного вещества. А дальше идет обычное очковтирательство – просто смешивается вода с еще большим количеством воды. Приблизительно за 40–50 разведений мы смогли бы разбавить до одной молекулы все вещество известной Вселенной.
Поэтому когда Яго закончил процедуру и сделал свой показательный глоток, вода, которую он пил, была столь же чиста, как и вода из крана. Сторонники гомеопатии, конечно, знают все это, но считают, что молекулы воды сохраняют «память» о любом веществе, первоначально в ней растворенном, а приготовленный таким образом раствор даже действеннее, чем первоначальное вещество. Это не соответствует всему, что мы знаем из физики и химии, да и клинические испытания гомеопатических препаратов показывают, что их эффективность в борьбе с болезнью не выше, чем у плацебо.
Однако людям часто свойственно не доверять фактам. А ведь один из самых замечательных фактов – это то, что вещество состоит из атомов и молекул. И кроме того, для создания многообразия всего, существующего в нашем наблюдаемом мире, требуется лишь несколько фундаментальных элементарных частиц, способных образовывать различные комбинации.
На первый взгляд «зоопарк» частиц выглядит сложным и устрашающим, но на самом деле существует всего двенадцать частиц вещества, которые распадаются точно на две группы по шесть: кварки, которые участвуют в сильных ядерных взаимодействиях, и лептоны, которые этого не делают. История открытия элементарных частиц – это удивительная история, длившаяся столетие: начиная с обнаружения электрона в 1897 году и до открытия последнего элементарного фермиона (тау-нейтрино) в 2000 году. Здесь мы проведем краткую экскурсию по «зоопарку», а более подробное описание частиц и их характеристики приведем в Приложении 2. Когда все разложится по полочкам, мы будем иметь относительно простой набор частиц, из которых сделано все остальное.
Изображения атомов
Все видели схематические изображения атомов. На этих рисунках атомы похожи на крошечные солнечные системы: в центре – ядро, а вокруг него, каждый по своей орбите, вращаются электроны. Эта схема используется в качестве логотипа Комиссии по атомной энергии США. Однако на самом деле такое изображение атома – искусный обман.
Эта картинка – по сути модель атома Бора, названная в честь датского физика Нильса Бора, использовавшего в определении структуры атома идеи квантовой механики. До этого была принята другая модель атома, предложенная Эрнестом Резерфордом, английским физиком, уроженцем Новой Зеландии. В модели атома Резерфорда электроны вращались вокруг ядра на самых разных расстоянии, подобно планетам в реальной Солнечной системе (с той разницей, что на электроны действует электромагнитная сила, а не сила тяжести). Бор модифицировал эту идею, внеся ограничение, согласно которому электроны могут находиться только на определенных орбитах, и это явилось крупным шагом вперед в объяснении экспериментальных данных, касающихся спектров атомов. Теперь мы знаем, что электроны на самом деле вообще не «вращаются», потому что они в реальности не имеют точного «положения» или «скорости». Квантовая механика говорит, что электрон существует в виде облака вероятности, называемого «волновой функцией», которая показывает, где мы могли бы обнаружить частицу, если бы принялись ее искать.
Схематическое изображение атома, в данном случае атома гелия. Ядро расположено в центре и состоит из двух протонов и двух нейтронов, а два электрона «вращаются» на некотором расстоянии вокруг него.
Со всеми этими оговорками, если мы хотим получить лишь некоторое интуитивное представление о том, что в атоме происходит, сложившееся у нас в голове схематичное представление о том, как он выглядит, не так уж плохо. Ядра в центре, электроны на окраинах. Электроны относительно легкие, больше 99,9 % всей массы атома находится в ядре, а ядро состоит из смеси протонов и нейтронов. Нейтроны немного тяжелее, чем протоны, – нейтрон тяжелее электрона примерно в 1842 раза, а протон – примерно в 1836 раз. И протоны, и нейтроны называются «нуклонами», поскольку являются частицами, входящими в состав ядер. Оба нуклона удивительно похожи друг на друга, только вот протон имеет электрический заряд, а нейтрон – нейтрален, и, как уже было сказано, чуть-чуть тяжелее.