Путь Черепах. Из дилетантов в легендарные трейдеры - Куртис Фейс 13 стр.


График показывает, что длинную позицию нужно было открывать 10 апреля, когда цена перескочила прежний максимум, равный 0,6802, достигнутый 7 марта. Обратите внимание на то, что попытка перескочить эту цену в конце марта была безуспешной. Это хороший пример сопротивления, то есть начала продаж. Во второй раз это удалось – цена поднялась до этого уровня, пробила его и достигла значения 0,74 без серьезных откатов. Цена выросла благодаря тому, что никто из трейдеров не хотел продавать на этом уровне и в то же время было много желающих купить по более высоким ценам.

Тренд Дончиана с выходом по времени

Вариация тренда Дончиана, называемая тренд Дончиана с выходом по времени, использует вместо выхода на прорыве выход через определенный промежуток времени. Сделки закрываются через 80 дней, и стопы не применяются вообще. Многие трейдеры заявляют, что входы не имеют значения, а важны только выходы. Эта система – мой ответ на такие заявления. Когда мы сравниваем эффективность данной системы с эффективностью других, легко заметить, как соотносится простой выход в данной системе со сложными выходами других систем.

Рисунок 10-3. Система тренда Дончиана

Copyright 2006 Trading Blox, все права защищены.

Двойная скользящая средняя

Это очень простая система, согласно которой покупки и продажи осуществляются, когда 100-дневная скользящая средняя пересекает более медленную 350-дневную скользящую среднюю. Эта система всегда присутствует на рынке, либо в виде длинных, либо в виде коротких позиций. Выход из сделок производится только в момент пересечения двух скользящих средних – в это время сделка закрывается и открывается другая, в противоположном направлении. Рисунок 10-4 изображает систему двойных скользящих средних.

100-дневная скользящая средняя двигается рядом с ценами. В момент пересечения в конце июля открывается длинная позиция. Можно сказать, что это система длительного следования тренду, и по сравнению с другими системами торговля в ней осуществляется гораздо реже.

Тройная скользящая средняя

Эта система использует три скользящие средние – за 150, 250 и 350 дней. Покупки и продажи происходят только в случае, когда 150-дневная средняя пересекает более медленную 250-дневную среднюю. В качестве фильтра тренда используется более длинная 350-дневная скользящая средняя. Торговля возможна, только если более краткосрочные скользящие средние находятся на той же стороне тренда, что и длинная 350-дневная средняя. Если обе средние выше 350-дневной, возможны длинные сделки; если же они ниже, возможны только короткие сделки.

В отличие от системы двойной средней эта система не всегда присутствует на рынке. Сделки закрываются, когда 150-дневная средняя пересекает 250-дневнюю среднюю. На рисунке 10-5 изображена система тройной скользящей средней.

Верхняя линия – это 150-дневная средняя, средняя линия – 250-дневная средняя, а нижняя линия – 350-дневная средняя. Можно заметить, как все линии постепенно следуют вверх за колебаниями цены за тот же период, что использован на рисунке 10-4. Сделки по данной системе будут закрыты, когда верхняя линия пересечет среднюю и окажется под ней. Перед тем как мы перейдем к следующему разделу, подумайте над тем, как могут соотноситься результаты работы по разным системам за данный период. Насколько хуже периодический выход по сравнению с обычным выходом на прорыве? У каких двух систем, по вашему мнению, будет наилучший показатель MAR? Насколько результаты тройной скользящей средней будут лучше, чем результаты двойной скользящей средней?

Рисунок 10-4. Система двойной скользящей средней

Copyright 2006 Trading Blox, все права защищены.


А вот и результаты

Я протестировал все шесть систем с одним и тем же набором данных – управление деньгами, портфель, даты начала и окончания – с использованием нашего программного продукта Trading Blox Builder. Программа смоделировала действия всех систем с января 1996 года по июнь 2006 года. Была сымитирована каждая сделка и собрана сводная статистика по каждой системе. В таблице 10-1 указаны основные параметры оценки для каждой из шести систем.

Таблица 10-1. Сравнение исторической результативности систем

Copyright 2006 Trading Blox, все права защищены.

Когда я протестировал выходы по времени, я был шокирован. Система сработала гораздо лучше, чем я предполагал, даже лучше, чем выходы на прорывах. Это заставляет пересмотреть идею о том, что именно выходы делают систему прибыльной. Результаты показывают, что именно вход с перевесом отвечает за всю прибыльность системы.

Рисунок 10-5. Система тройной скользящей средней

Copyright 2006 Trading Blox, все права защищены.

Обратите внимание, что система Дончиана сработала хуже, чем другие системы. Это свидетельствует о том, что прорывы потеряли свою актуальность за годы, прошедшие с момента обучения Черепах. Полагаю, во многом это связано с тем, что я описываю в главе 11 как эффект трейдера.

Еще один заметный сюрприз в таблице – работа системы двойной скользящей средней, показавшей лучшие результаты по сравнению с более сложной системой тройной скользящей средней. Это лишь один из примеров того, что, если система более сложная, она не обязательно лучше.

Все эти системы являются базовыми. Три из них – двойная скользящая средняя, тройная скользящая средняя и система Дончиана с выходами по времени – даже не используют стопы. Тем самым они нарушают излюбленное правило трейдинга «всегда имейте стоп-лосс», однако их результаты с поправкой на риск такие же или лучшие по сравнению с другими системами.

Добавляем стопы

Многие трейдеры чувствуют себя некомфортно, не имея возможности устанавливать стопы. Как вы думаете, что произойдет с результативностью системы двойной скользящей средней, если к ней добавить стопы? Многие любят об этом рассуждать, спрашивать друзей или обращаться к более опытным трейдерам за ответом.

На рисунке 10-6 отображен эффект использования стопов различной величины, выраженных с помощью ATR от точки входа.

Рисунок 10-6. Эффект стопов в системе двойной скользящей средней: изменение коэффициента MAR в зависимости от величины стопа

Copyright 2006 Trading Blox, все права защищены.

Заметьте, что при нулевом варианте, то есть полном отсутствии стопов, значения всех показателей – CAGR%, MAR, коэффициента Шарпа, величины и продолжительности падения – гораздо лучше. То же самое происходит и при тестировании тройной скользящей средней – значение каждого показателя ухудшается при использовании стопов. Тот же тест, проведенный для системы Дончиана с выходами по времени, продемонстрировал аналогичные результаты, кроме случаев с большими стопами (10 ATR и больше), значения при которых были почти такими же, что и при отсутствии стопов. Это явно противоречит распространенному мнению об обязательности стопов. Почему так происходит? Разве нас не учили, что стопы важны для сохранения капитала? Почему падение не уменьшается при добавлении стопов?

Многие трейдеры полагают, что все, о чем им нужно беспокоиться, – это риск серии убыточных сделок. Хотя такое убеждение справедливо для краткосрочных трейдеров, сделки которых длятся лишь несколько дней, оно неверно для трейдеров, следующих за трендом, для которых падение может возникать при развороте тренда, особенно крупного. Часто развороты тренда сопровождаются очень неопределенным состоянием рынка, на котором крайне сложно торговать.

Черепахи знали, что для следующих за трендом вполне нормальной частью трейдинга является отдача части прибыли, полученной в ходе движения тренда. Мы знали, что у нас будут периоды крупных падений. Тем не менее такие ситуации были крайне болезненными для некоторых Черепах, особенно не любивших терять деньги. Наблюдать за тем, как исчезает только что заработанная прибыль, – самая сложная часть нашего стиля трейдинга.

При следовании за трендом падение провоцирует не риск входа, а отдача части прибыли. В главе 11 мы поговорим об этом более обстоятельно, а сейчас вернемся к нашему тестированию систем.

И вновь к результатам

Если вы помните, системы тестировались до июня 2006 года. С тех пор прошло несколько месяцев. Возможно, вам интересно узнать, что случилось с нашими системами за это время.

Какую систему вы бы избрали для торговли, базируясь на данных до июня 2006 года? Если бы вам нужно было выбрать две системы, то какие вы бы выбрали? Я изменил конечные даты для тестов и использовал данные по ноябрь 2006 года. В таблице 10-2 приведены скорректированные результаты.

И вновь к результатам

Если вы помните, системы тестировались до июня 2006 года. С тех пор прошло несколько месяцев. Возможно, вам интересно узнать, что случилось с нашими системами за это время.

Какую систему вы бы избрали для торговли, базируясь на данных до июня 2006 года? Если бы вам нужно было выбрать две системы, то какие вы бы выбрали? Я изменил конечные даты для тестов и использовал данные по ноябрь 2006 года. В таблице 10-2 приведены скорректированные результаты.

Показатели CAGR% и MAR свидетельствуют, что последние месяцы 2006 года были плохими для последователей трендов. Интересны произошедшие изменения. В таблице 10-3 приведены процентные изменения в величинах CAGR% и максимального падения.

Таблица 10-2. Сравнение исторической результативности систем по ноябрь 2006 года

Copyright 2006 Trading Blox, все права защищены.

Таблица 10-3. Сравнение результатов по июнь 2006 года и по ноябрь 2006 года

Copyright 2006 Trading Blox, все права защищены.

Что случилось? Почему результаты изменились так существенно? Почему у лучшей из наших систем на 50 процентов выросла величина падения? Почему система с простейшими выходами практически не изменила результативность за последние 5 месяцев, а некоторые другие системы действовали особенно неудачно? Как могут трейдеры выстраивать системы, работа которых будет в большей степени соответствовать ожиданиям? Или, говоря иначе, как вы можете привести свои ожидания в соответствие с возможными исходами при использовании системы?

Эти вопросы являются кратким вступлением к главе 11, в которой будут рассмотрены все эти темы. Ознакомившись с ней, вы станете лучше понимать разницу между результатами исторических тестов и реального трейдинга, а также факторы, обусловливающие разность результатов тестирования и реального трейдинга.


Глава 11 Ложь, грязная ложь и тестирование прошлого

Все, кто хотя бы немного занимается трейдингом, наверняка видели подобные объявления, равно как и те, кто интересуется трейдингом и получает прямую рассылку по этой теме. Но берегитесь, покупатели: есть много шарлатанов, использующих безответственные маркетинговые тактики и нереалистичные результаты тестирования прошлого для продвижения своих новых изобретений.

Многие из поставщиков сознательно выстраивают системы, которые никогда не принесут доходности, сопоставимой с той, которую обещают в рекламе. Некоторые из них сознательно меняют условия тестов для того, чтобы заставить системы выглядеть лучше, чем они есть на самом деле. Безусловно, не все продавцы столь неразборчивы в средствах. Некоторые верят в то, что продаваемые ими системы будут работать, не понимая, что их системы ошибочны по сути, или не зная, что тестирование данных прошлого имеет свои ограничения, не позволяющие использовать исторические результаты для предсказания будущего. Безусловно, есть и те, кто умеет избегать ошибок, связанных с историческим тестированием. Однако такие продавцы составляют подавляющее меньшинство, и для неискушенного трейдера крайне сложно распознать системы, разработанные с использованием хороших методов тестирования.

Даже профессиональные трейдеры зачастую не знают причин, по которым на практике их системы работают гораздо хуже, чем при историческом моделировании. Они знают о существовании этого феномена и принимают его во внимание, однако не понимают его причин. Трейдеры выделяют четыре основных источника расхождений между результатами исторического тестирования и реальной практики:

– Эффект трейдера: тот факт, что некий метод позволил кому-то заработать много денег, побуждает прочих трейдеров использовать сходные идеи. Чаще всего это приводит к тому, что метод перестает работать так же эффективно, как в самом начале.

– Случайные эффекты: успешные исторические результаты теста могут быть вызваны случайным стечением обстоятельств.

– Парадокс оптимизации: замена одного из параметров (например, использование 25-дневной скользящей средней по сравнению с 30-дневной в изначальной модели) снижает точность прогноза.

– Подгонка результатов или подгонка кривой: система может быть столь сложной, что окажется неприменимой для реальной практики. Система целиком базируется на ситуации прошлого, и небольшое изменение поведения рынка может привести к существенному искажению результатов ее использования.

Эффект трейдера

В физике есть понятие эффект наблюдателя – суть его заключается в том, что измерение явления иногда влияет на само явление; обозреватель нарушает чистоту эксперимента самим фактом обозревания. Нечто подобное порой происходит и в трейдинге – проводимая сделка может изменить условия рынка, согласно которым предсказывался ее успех. Я называю такую ситуацию эффектом трейдера. Все, что повторяется с определенной регулярностью, рано или поздно будет замечено несколькими игроками на рынке. Таким же образом стратегия, успешно работавшая в недавнем прошлом, наверняка будет замечена многими трейдерами. Однако если слишком многие из них захотят воспользоваться преимуществами этой стратегии, она перестанет работать так же, как в прошлом.

Представьте себе стратегию прорыва. Если вам известно, что многие трейдеры планируют осуществить закупки в момент прорыва на достаточно вялом рынке, что вы можете сделать, чтобы заработать в этой ситуации? Какая стратегия позволит вам получить деньги с той же легкостью, как если бы вы их напечатали?

Возможно, вы захотите разместить свои приказы раньше, чем другие трейдеры, тем самым спровоцировав рост цен до уровней, вызывающих цепную реакцию размещения приказов крупными игроками. Тогда вы сможете продать им свою позицию и получить гарантированную прибыль – по сути, вы продвинули цены и получили преимущества по сравнению с другими игроками.

Представьте себе, что вы торгуете золотом. Что бы вы предприняли, узнав, что ACME планирует закупить, к примеру, 1000 августовских контрактов по цене 410,50 долларов?

Если бы вы смогли купить достаточно контрактов, чтобы поднять цену на рынке до этого уровня, вы могли бы их продать, как только этот уровень будет достигнут. С одной стороны, если текущая цена далека от желаемой, для того чтобы гарантированно поднять рынок до нее, может потребоваться больше денег, чем у вас есть. С другой стороны, если цена достаточно близка к желаемой и составляет, к примеру, 408 долларов, то серия покупок может поднять цену так, чтобы инициировать эти покупки со стороны ACME.

Так как вы сначала покупаете, а потом быстро продаете, вы можете изменить само понятие прорыва. Пока в действие не вступил эффект трейдера, прорыв означал пробитие уровня сопротивления, вследствие чего возникала высокая вероятность движения цены в предпочтительном направлении. Однако с появлением новых сделок, направленных лишь на то, чтобы сдвинуть рынок достаточно для возникновения прорыва, понятие прорыва изменилось.

Давайте изучим эту концепцию на конкретном примере. Представьте, что на рынке нет покупателей, готовых покупать по цене 408 долларов или выше, однако есть продавцы, желающие продать 1000 контрактов по любой цене выше 409 долларов, и эти приказы на продажу будут действовать как потолок, не позволяющий ценам подняться выше 409 долларов. Пока вы не разместили ваши дополнительные приказы на покупку, рынок вряд ли готов вырасти до уровня 410,50 долларов, соответственно, прорыв не происходит. С точки зрения симуляционной модели на базе прорывов в данной ситуации прорыва нет, а значит, сделки не проводятся.

Теперь представьте, что при тех же условиях вы входите в рынок и покупаете 1000 контрактов по средней цене 409 долларов; на рынке больше нет продавцов, готовых продавать по этой цене, поэтому вы покупаете еще 100 контрактов по цене 411 долларов. Эта сделка заставляет крупного покупателя начать действовать, и в это самое время вы продаете ему 1000 контрактов по 411 долларов. Хотя он считает, что получил хорошую цену, вы осуществили прекрасную сделку. Вам остается лишь избавиться от оставшихся 100 контрактов. Поскольку на рынке нет покупателей, готовых купить по недавней цене, вы должны ее снизить – вы продаете 100 контрактов по цене, на которую рынок был согласен, то есть 407 долларов. Вы теряете 4 доллара за 100 унций по 100 контрактам, то есть 40 000 долларов, однако вы заработали 2 доллара за 100 унций по 1000 контрактам и получили прибыль 160 000 долларов без учета комиссионных. Неплохо для нескольких секунд работы.

Назад Дальше