Космические сыщики - Николай Горькавый 14 стр.


Пензиас предложил руководству лаборатории «Белл» модифицировать антенну для радиоастрономических наблюдений. Руководство согласилось.

Весной 1963 года к Пензиасу присоединился американский физик Роберт Вильсон, выходец из Техаса.

Вместе они стали превращать антенну-рупор в сверхчувствительный инструмент для радиоастрономических наблюдений.

С самого начала Пензиас и Вильсон знали, что в антенне есть заметный дефект – она «шумела», то есть ловила непонятный радиошум. Инженеры, которые прежде работали на ней и регистрировали сигналы спутников, пытались избавиться от помех, но у них ничего не получалось.

Пензиасу и Вильсону тоже мешал этот постоянный шум в антенне, не связанный с каким-либо известным фактором. Сначала они рассмотрели все возможные причины шума – например, воздействие радиоизлучения огромного города Нью-Йорка, расположенного неподалёку. Однако все известные источники радиошума располагались в определённых направлениях, а таинственный шум шёл отовсюду.

За 1964 год учёные безуспешно испробовали самые разные варианты избавления от шума, включая очистку антенны от голубиного помёта, который авторы научной статьи деликатно назвали «белым диэлектрическим веществом», а также изгнание самих голубей.

Ничего не помогало! Антенна упорно регистрировала шум, который соответствовал радиоизлучению чёрного тела с температурой в 3,5 градуса Кельвина.

– Что это значит? – спросила Галатея.

– Как мы уже узнали из другой сказки, Планк вывел универсальную формулу излучения тела в зависимости от его температуры. Во-первых, эта формула задавала вид спектра тела – то есть зависимость интенсивности его свечения от длины волны. Планковский спектр описывался плавной кривой с одним «горбом», или максимумом, на определённой длине волны. Во-вторых, из этой формулы следовало, что при нагреве тела интенсивность свечения росла и одновременно максимум спектра смещался в сторону коротких волн. Умеренно нагретый кусок металла или холодная звезда слабо светятся красным, нагретые сильнее – жёлтым, а самые горячие звёзды оказываются самыми яркими и голубыми. Верно и обратное: если тело остужать, его спектр смещается в длинные волны: сначала до инфракрасного излучения, а потом до радиодиапазона. Радиоизлучение с температурой в 3,5 градуса по Кельвину означает, что такие радиоволны может излучать тело, имеющее температуру минус 270 градусов по Цельсию.

– Это температура ужасного мороза! – удивилась Галатея.

– Верно. Пензиас и Вильсон получили странный результат – их антенна шумела так, словно Вселенная была заполнена очень холодным веществом. Ещё страннее то, что интенсивность этого излучения не зависела от направления. Все известные обычные радиоисточники были локальными: отворачивая от них антенну, можно убрать и сигнал. Но странный шум шёл отовсюду, из любой точки на небе.

В начале 1965 года Пензиас узнал от знакомого физика, что в Принстонском университете, который находился всего в полусотне километров от их радиоантенны, группа знаменитого учёного Дикке работает над поиском остаточного излучения от взорвавшейся Вселенной – и они могут знать, что происходит с антенной-рупором, с которой возились Пензиас и Вильсон.

Пензиас набрался смелости и позвонил Дикке.

Роберт Дикке был известным профессором легендарного Принстонского университета. Кроме Гамова, другие учёные тоже приходили к мысли об осциллирующей Вселенной. Идею об её расширении как о фазе, следующей за предшествовавшим сжатием, разрабатывал и Роберт Дикке. Он отмечал: «…я боюсь говорить о „рождении“ Вселенной, ибо полагаю, что Вселенная не была „рождена“, а скорее эволюционировала из прежней коллапсированной фазы… Можно полагать, что во время коллапса Вселенной энергия электромагнитного поля и нейтринного излучения чрезвычайно возрастает аналогично излучению при… сжатии, пока, наконец, не достигается тепловое равновесие при температуре свыше десяти миллиардов градусов Кельвина. Неизвестным в настоящее время образом этот коллапс может быть обратим, т. е. Вселенная расширяется от этого очень горячего состояния».

Дикке понимал, что излучение горячей вначале Вселенной может до сих пор существовать в космосе. Летом 1964 года он пришёл к выводу, что это остаточное излучение можно зарегистрировать приборами.

Советские астрофизики А. П. Дорошкевич и И. Д. Новиков в этом же 1964 году рассчитали, насколько интенсивность гипотетического реликтового излучения должна превышать в сантиметровом диапазоне интенсивность излучения обычных радиоисточников. Этот расчёт показал возможность экспериментального обнаружения реликтового излучения.

Роберт Дикке привлёк своих сотрудников к проекту. Джим Пибблс занялся теоретическими расчётами интенсивности излучения. Питер Ролл и Дэвид Вилкинсон стали готовить эксперимент для обнаружения этого первичного космологического излучения.

В начале 1965 года Пибблс оценил, что температура остаточного излучения Вселенной не может быть больше 10 градусов Кельвина. Он послал эти результаты в научный журнал и включил их в свой доклад в Лаборатории прикладной физики в Мериленде. Слухи о планируемом эксперименте начали распространяться и достигли Пензиаса с Вильсоном. Когда Пензиас позвонил Дикке, тот обедал с Пибблсом, Роллом и Вилкинсоном. Дикке поднял трубку, и молодой человек, представившись, стал рассказывать о странном шуме, который они с другом регистрировали в своей антенне. Профессор задал несколько вопросов и назначил встречу. Положив трубку, он повернулся к коллегам и сказал полушутливо:

– Ребята, нас опередили!

Через несколько дней, в конце марта 1965 года, Дикке, Ролл и Вилкинсон приехали к Пензиасу и Вильсону. Пензиас рассказал об их с Вильсоном результатах, а потом гости осмотрели антенну. Пензиас вспоминал, что учёные из Принстона сначала решили, что приехали к паре «телефонистов», но, когда Дикке узнал, что измеренная температура радиошума равна 3 градусам Кельвина, он повернулся к своей команде и сказал: «Они получили то, что надо!»

Учёные из лаборатории «Белл» и астрономы из Принстона сумели договориться, и в американском журнале «Письма в астрофизический журнал» было опубликовано сразу две работы. Одна, статья Пензиаса и Вильсона, рассказывала об открытии постоянного радиошума в космосе, а другая – Дикке, Пибблса, Ролла и Вилкинсона – излагала теоретическую интерпретацию реликтового шума как холодного эха древнего горячего взрыва, а также сообщала о готовящемся эксперименте в группе Дикке. Пятистраничную статью группы Дикке в журнале почему-то разместили первой, а после неё поставили одностраничную заметку Пензиаса и Вильсона. Однако Нобелевский комитет расставил эти работы в ином порядке.

История с открытием остаточного излучения получила драматическое продолжение. Ранняя статья Пибблса была отвергнута журналом на основании того, что 90 % результатов были получены ранее – в группе Гамова, Альфера и Хермана. Рецензенты даже прислали Пибблсу список работ этой группы.

Тем не менее в статье Дикке-Пибблса-Ролла-Вилкинсона, которая была написана позже и опубликована вместе с заметкой Пензиаса и Вильсона, работы группы Гамова упоминались одной строкой как пример исследований в области нуклеосинтеза – без пояснений, что именно эта группа ещё 17 лет назад получила правильные теоретические оценки реликтового излучения. Впоследствии Пибблс клялся, что ни он, ни Дикке не знали работ группы Гамова.

Зная, что рецензенты заранее указали Пибблсу на работы гамовской группы, Альфер сказал: «Джим Пибблс знал о наших работах, если он не беспробудно туп!»

Никки нахмурилась:

– Учёные, которые сознательно не ссылаются на работы предшественников, подобны торгашам, которые изо всех сил стараются продать свой несвежий товар. Любой учёный должен заботиться о безошибочности обзора работ предшественников так же, как о безошибочности своих математических вычислений. Пожалуй, сделать математическую ошибку предпочтительнее, чем не сослаться на коллегу, который сделал что-то раньше тебя или которому твоя работа чем-то обязана.

Десяток статей, опубликованных в 1948 году Гамовым, Альфером и Херманом, а также диссертацию Альфера, защищенную тогда же, сейчас тщательно изучают историки науки и учёные. Ведь с них началась современная космология горячей расширяющейся Вселенной, которая победила две другие теории: модель стационарной Вселенной Бонди-Голда-Хойла и модель холодной Вселенной советского физика Якова Борисовича Зельдовича.

Одним из самых старательных исследователей работ группы Гамова стал Джим Пибблс, который до глубокой старости публиковал науковедческие материалы о легендарных статьях 1948 года.

В 1978 году Пензиас и Вильсон поделили половину Нобелевской премии по физике за случайное открытие реликтового излучения. Из теоретиков, предсказавших холодное эхо горячей Вселенной, премию никто не получил.

Одним из самых старательных исследователей работ группы Гамова стал Джим Пибблс, который до глубокой старости публиковал науковедческие материалы о легендарных статьях 1948 года.

В 1978 году Пензиас и Вильсон поделили половину Нобелевской премии по физике за случайное открытие реликтового излучения. Из теоретиков, предсказавших холодное эхо горячей Вселенной, премию никто не получил.

Никки добавила:

– Я не согласна с тем, что Пензиас и Вильсон сделали открытие случайно. Если учёные сконструировали очень чувствительную астрономическую радиоантенну, то совершенно закономерно, что их ждут «случайные» открытия!

Другую половину Нобелевской премии по физике за 1978 год получил советский учёный Пётр Капица – за работы в области низких температур и открытие сверхтекучести гелия.

Перед поездкой в Стокгольм за премией Пензиас пригласил к себе домой Альфера – чтобы тот помог ему с нобелевской речью. Альфер с горечью вспоминал, что Пензиас воспринимал его и Хермана как часть научного фольклора и не отдавал должного их вкладу в проблему реликтового излучения. После этого визита расстроенный Альфер слёг с сердечным приступом.

История открытия реликтового излучения полна упущенными возможностями.

В 1941 году канадский астроном Эндрю Мак-Келлар заметил, что межзвёздные линии молекулы CN (циана) возбуждены, будто космос имеет температуру 2,3 градуса Кельвина. Но правильная интерпретация его наблюдений была дана гораздо позже, после открытия Пензиаса-Вильсона.

Сам Дикке, работая в 1946 году в Массачусетском технологическом институте, зарегистрировал радиоизлучение из космоса с температурой меньше 20 градусов, но не придал ему особого значения. Он полагал, что на существующем оборудовании нельзя поймать сигнал из прошлого Вселенной. Выдающийся астроном Джон Мазер, специалист в области регистрации реликтового излучения, писал: «Я не согласен. Хотя такое измерение было трудно сделать с технологиями 1940-х и 1950-х годов, но это было возможно. Группа Дикке уже пыталась сделать это в военных 1940-х годах, но без сильной мотивации они сдались. Все необходимые части были доступны. Просто никто не пробовал».

Интересно, что в 1955 году аспирант-астроном Тигран Шмаонов в Пулковской обсерватории измерил фон неба в длине волны 32 см. Вывод из этих измерений был таков: «Оказалось, что абсолютная величина эффективной температуры радиоизлучения фона… равна 4 + 3 К». Шмаонов отметил, что интенсивность излучения не зависит от направления на небе и со временем не меняется. Он опубликовал свою работу в неастрономическом журнале, и она не привлекла внимания.

– А если бы он опубликовал свою работу в астрономическом журнале, то получил бы Нобелевскую премию? – спросила Галатея.

– Возможно, но не обязательно. Шмаонов работал под руководством известных радиоастрономов Хайкина и Кайдановского, но они тоже не поняли значимость открытия своего аспиранта. Вот если бы это измерение было правильно интерпретировано – в свете уже опубликованных статей группы Гамова, то да – Нобелевская премия за открытие могла достаться совсем другим людям. Но лишь в 1965 году открытие реликтового излучения – следствия Большого взрыва – прозвучало, получило правильное истолкование и широкий отклик. После этого, революционного по значимости, открытия космология выдвинулась в число популярных направлений астрономии, а Большой взрыв перестал быть гипотетической концепцией и перешёл в ряд экспериментально подтверждённых фактов.

Астрофизик И. Шкловский вспоминает эти годы в книге «Эшелон»: «В январе 1967 года в Нью-Йорке собрался второй Техасский симпозиум по релятивистской астрофизике – пожалуй, наиболее бурно развивающейся области астрономии. За 4 года до этого были открыты квазары, и границы наблюдаемой Метагалактики невероятно расширились. Всего только немногим более года прошло после открытия фантастического реликтового излучения Вселенной, сразу же перенёсшего нас в ту отдалённую эпоху, когда ни звёзды, ни галактики в мире ещё не возникли, а была только огненно-горячая водородно-гелиевая плазма. Тогда расширяющаяся Вселенная имела размеры в тысячу раз меньшие, чем сейчас. Кроме того, она была в десятки тысяч раз моложе. Я очень гордился, что сразу же получивший повсеместное признание термин „реликтовое излучение“ был придуман мною. Трудно передать ту атмосферу подъёма и даже энтузиазма, в которой проходил Техасский симпозиум».

Помолчав, Никки отметила:

– История реликтовых излучений не закончилась на обнаружении древних радиоволн. Существует ещё одно эхо Большого взрыва – остаточное гравитационное излучение, которым многие учёные пренебрегают, но ряд специалистов, включая Джона Уилера, считает его важной частью нашей Вселенной. Реликтовое гравитационное излучение обещает немало новых сенсаций.

Примечания для любопытных

Арно Пензиас (р. 1933) – известный американский астроном. Вместе с Робертом Вильсоном лауреат Нобелевской премии по физике (1978) за открытие реликтового излучения.

Роберт Вильсон (р. 1936) – известный американский астроном. Вместе с Арно Пензиасом лауреат Нобелевской премии по физике (1978) за открытие реликтового излучения.

Метагалактика – часть расширяющейся Вселенной, принципиально доступная для наблюдений.

Андрей Георгиевич Дорошкевич – доктор физико-математических наук, заведующий лабораторией ИКИ (Института космических исследований РАН).

Игорь Дмитриевич Новиков (р. 1935) – известный астрофизик-теоретик, соавтор Я. Б. Зельдовича. Член-корреспондент АН СССР.

Яков Борисович Зельдович (1914–1987) – знаменитый советский физик и астрофизик, один из создателей ядерного оружия. Академик АН СССР, трижды Герой Социалистического Труда, лауреат Ленинской премии и четырёх Сталинских.

Роберт Дикке (1916–1997) – известный американский астроном, разработчик ряда важных астрономических приборов. Член Национальной академии наук США.

Джим Пибблс (р. 1935) – известный канадско-американский космолог, профессор Принстонского университета.

Дэвид Вилкинсон (1935–2002) – американский астроном, известный своими работами в области космических телескопов и космологии. В его честь назван спутник WMAP (Wilkinson Microwave Anisotropy Probe).

Эндрю Мак-Келлар (1910–1960) – известный канадский астроном, член Королевского общества и президент Канадского астрономического общества.

Семён Эммануилович Хайкин (1901–1968) – известный советский физик и радиоастроном, доктор физико-математических наук, профессор.

Наум Львович Кайдановский (1907–2010) – известный советский радиоастроном, доктор физико-математических наук, разработчик антенн для радиотелескопов.

Джон Уилер (1911–2008) – выдающийся американский теоретик, автор работ в области квантовой теории и теории относительности. Ввел в обращение термин «чёрная дыра». Вместе с Чарльзом Мизнером (р. 1932) и Кипом Торном (р. 1940) написал знаменитый учебник «Гравитация» (1977).

Джон Мазер (р. 1946) – выдающийся астроном-наблюдатель, создатель крупнейшего космического телескопа Уэбба. Лауреат Нобелевской премии по физике (2006).

Сказка о Джоне Мазере, который измерил сияние самого чёрного в мире тела

Дзинтара вошла в комнату и сказала детям:

– Сегодняшнюю историю расскажет вам сам автор, которого вы уже знаете.

– Знаем! – воскликнула Галатея, приветствуя вошедшего человека.

Рассказчик поудобнее устроился на мягком диване, а Дзинтара поставила перед ним на столик большую кружку с душистым чаем.

– Я хочу рассказать вам об астрономе, который является для меня символом учёного. Его зовут Джон Мазер, он опытный наблюдатель и талантливый конструктор космических телескопов. Двадцать с лишним лет назад я был молодым учёным, работал в отдалённой Крымской обсерватории и не был знаком с Джоном. Но однажды со мной связался его сотрудник, который был моим соавтором по паре статей, и рассказал об одной сложной проблеме, с которой столкнулась группа Мазера при проектировании нового космического телескопа. Речь шла о зодиакальном свете – светлой полосе вдоль плоскости Солнечной системы. Это свечение вызвано рассеянием солнечных лучей на межпланетных частицах, его изучал ещё Иммануил Кант. Оно мешает астрономам исследовать как реликтовое излучение, так и излучение нашей Галактики.

Зодиакальное свечение было измерено спутником COBE, который вращался вокруг Земли, но какой эта засветка будет в поясе астероидов, где, по одному из вариантов, мог быть размещён новый телескоп? Ответа на этот вопрос никто не знал, поэтому стали искать теоретика, готового взяться за моделирование зодиакального света в разных точках Солнечной системы. Для этого надо было определить происхождение зодиакального света, что само по себе является интереснейшей задачей. Я взялся за эту задачу – и Джон Мазер стал моим научным руководителем. После продолжительных математических и компьютерных расчётов трёхмерная модель распределения межпланетной пыли была создана и карты зодиакального света в разных точках Солнечной системы были рассчитаны и опубликованы. Это стало началом моего длительного знакомства с Джоном Мазером – и я до сих пор с восхищением наблюдаю за этим учёным.

Назад Дальше