Возможно ли такое на самом деле? Я с детства хотел проверить этот опыт, но все никак не мог собраться. И вот придумал, как это сделать просто и быстро. Мне надо было доказать, что ледяная линза увеличивает, может фокусировать свет, как и стеклянная.
Для опыта нам понадобится обычный воздушный шарик. Я надел его на кран и налил воды так, чтобы он стал круглым, но не очень большим, примерно с блюдце в диаметре.
Шарик изо льда, заполненный водой внутри.
Затем завязал горлышко шарика узлом… и положил в морозилку! Стал ждать. Дело в том, что вода в шарике замерзает с краев – внутрь. Поэтому сначала образуется ледяная корка, а внутри шарика еще плещется вода. И надо вынуть шарик, пока еще не весь он промерз насквозь. Потому что мы уже знаем, что иначе лед внутри начнет распирать верхние слои и шарик треснет.
Все получилось, как и предсказывали законы физики. Я вытащил шарик, когда он промерз примерно на полсантиметра. Внутри видно было, как плавают пузырьки в воде. Посмотрите на фотографию, как забавно он выглядел, когда я содрал с него резиновую оболочку.
Я положил его в раковину на пластмассовую сетку, и на второй фотографии четко видно, что сетка сильно увеличивается, то есть шарик работает как большая линза!
Шарик, лежащий на сетке, – сетка увеличивается!
На фотографии хорошо видно, что пластмассовая сетка через линзу смотрится примерно в четыре раза больше, чем без увеличения. Это означает, что такой шарик изо льда увеличивает в четыре раза.
Так что Жюль Верн был прав: изо льда действительно можно сделать линзу, которая будет собирать солнечные лучи – и зажигать огонь!
Кстати, я проверил, действительно ли ледяной шарик лопнет, если замораживать его дальше, до конца, насквозь? Посмотрите, как он взорвался изнутри.
Шарик изо льда, взорванный изнутри при полном замораживании.
Тем, кто захочет повторить эту вторую часть опыта, надо быть осторожным – положить шар в мисочку, потому что, когда шарик лопнет, из него вытекут остатки воды и замерзнут на дне морозилки.
Между тем получился еще один красивый опыт. На фотографии отлично видно, как внутри ледяной оболочки располагаются трещины. О чем они говорят?
А они показывают, как распределяется давление и как взрывается изнутри материал, скажем, у наполненной порохом бомбы или ядра. В старину делали ядра из металла, а внутрь насыпали порох и стреляли из пушек. Ядра были круглые. Наш ледяной шарик явился как раз моделью такого ядра. При замерзании на первом этапе сформировалась оболочка – как будто это металлическая оболочка ядра. На втором этапе замерзания лед создает давление изнутри, как будто это взрывается порох. Силы, распирающие оболочку изнутри, рвут материал (лед), и он лопается. Трещины показывают, где разрывающее усилие достигло максимума, стало непереносимым для оболочки. Поскольку лед прозрачный и поверхности этих трещин хорошо видны в отраженном свете, мы можем это увидеть просто своими глазами, без всяких приборов.
77 Яйцо без скорлупы
Для опыта нам потребуются: куриное яйцо, уксус.
Этот опыт довольно смешной, я сам не ожидал, что он получится. Можно ли так аккуратно очистить сырое яйцо от скорлупы, чтобы не разлить его, а получить «жидкий мешочек»?
Оказывается, можно. И для этого надо воспользоваться растворимостью кальция в уксусе. Все, кто смотрят телевизор, наверняка видели рекламу о необходимости чистить зубы для защиты от кариеса. Так вот, во время еды часто в рот попадают продукты с некоторым содержанием кислоты. Например, кислоту содержат свежие яблоки. Это не значит, что яблоки есть вредно, – полезно! Но надо понимать, как кислота воздействует на зубы.
Возьмем свежее куриное яйцо (пожертвуем для опытов, потому что есть его потом будет нельзя). Нальем в баночку уксуса и положим туда яйцо, так чтобы оно полностью было покрыто уксусом. Только с уксусом, даже слабым, надо работать очень аккуратно, чтобы он не попал в глаза или на руки. Нюхать его тоже не рекомендуется, пары уксуса вредны для слизистой оболочки. Поэтому баночку потом надо будет закрыть плотной крышкой. Мы увидим, что от яйца начнут подниматься мелкие пузырьки. Это уксус начал разъедать кальций, из которого в основном состоит оболочка яйца. При реакции уксуса и кальция образуется и выделяется газ.
Мало того, у меня (я использовал довольно крепкий уксус, эссенцию) скорлупа лопнула изнутри. Произошло это потому, что газ образовывается и внутри скорлупы, накапливается и разрывает скорлупу. Можно оставить яйцо в банке на денек-другой. Это будет зависеть от того, насколько быстро пойдет реакция.
Через день-два вы увидите, что яйцо почти очистилось от скорлупы. Как минимум скорлупа стала мягкой! Поставьте баночку под холодную струю воды, подождите, пока промоется уксус, – и можете доставать «жидкий мешочек»!
Конечно, это яйцо кушать уже нельзя. Уксус проник и внутрь белка и даже немного его сварил химически. Но зато подержать и потрогать такое яйцо без скорлупы очень занятно.
78 Водяные струи
Для опыта нам потребуется: одноразовый пластмассовый шприц.
Этот простой опыт мы сделаем с помощью обычного медицинского шприца без иголки. Шприц можно купить очень дешево для опыта в любой аптеке – одноразовый, пластмассовый. Устроен шприц просто – внутри пластмассового цилиндрика ходит поршень. Если опустить носик шприца в воду и потянуть поршень, вода будет набираться в шприц. Если же нажать на поршень, то вода с силой вылетит из носика тонкой струей.
Если на носик шприца надеть иголку, то струя будет еще тоньше и вылетать еще дальше. Собственно говоря, вот и весь опыт. Что же в нем такого, что стоило его проводить?
Давайте посмотрим внимательно на то, что произошло. Мы сдвинули поршень чуть-чуть, на полсантиметра или сантиметр. А из носика струя вылетела на метр, а то и дальше! Да еще с большой скоростью. Наш палец при нажатии явно двигался медленнее. Почему же так происходит?
Дело в том, что поршень двигается в широкой части шприца и давит на большую площадь воды. А на выходе шприц сужается. Тому количеству (объему) воды, которое выдавливает поршень при сдвиге на небольшое расстояние, надо «выскочить» через маленькое отверстие за то же время, что двигается поршень. Значит, воде приходится в этом месте бежать быстрее – ровно настолько, насколько отличается ширина шприца в середине и у носика.
Фактически шприц работает «ускорителем». Он позволяет разгонять струю воды до большой скорости.
Интересно, что шприц может работать еще и не только «ускорителем», но и увеличителем силы. Многие видели, как гидравлическим домкратом поднимают кузов автомобиля, когда меняют колесо. Так вот, домкрат – это, по сути, обычный шприц, у которого вместо воды используется масло. Через «носик», то есть через узкую часть, нагнетается масло в широкую. Поскольку давление масла (или воды) в широкой и узкой части одинаково, то можно создавать очень большое давление на поршень через масло. А поршень под этим давлением будет сдвигаться и двигать кузов машины или другого тяжелого предмета.
Вы спросите, почему бы сразу не создать давление на поршне, без всякого масла и ухищрений? А вот оказывается, что на узкий, маленький поршень можно создать гораздо большее давление, используя одну и ту же силу. Ведь давление тем больше, чем меньше площадь, на которую давим. Это легко запомнить: у иголки площадь острия очень маленькая, поэтому с ее помощью мы можем создать огромное давление. Попробуйте пальцем проткнуть деревяшку хотя бы на полмиллиметра! А иголка войдет легко, хотя мы давим на нее тем же пальцем.
Поэтому в домкрате (а это, по сути, как мы помним, наш шприц) в узком месте создается большое давление и передается через масло на широкую часть!
Вот такие непростые законы таятся в обычном медицинском шприце. А чтобы прибор не пропадал зря, можно сделать мишень и пострелять в нее водой на меткость!
79 Весенняя капель из карандаша, или Чем отличается скрипка от гитары
Для опыта нам потребуются: любой деревянный карандаш, булавка с головкой.
Существуют самые разнообразные музыкальные инструменты. Дудки, барабаны, гитары, рояли… Человек изобрел первые инструменты сотни тысяч лет назад, барабаня по пустым стволам деревьев и натягивая жилы животных на палки. Попробуем и мы сделать свой маленький музыкальный инструмент из булавки и карандаша! А заодно познакомимся с некоторыми интересными физическими законами.
На фотографии: карандаш с воткнутой под прямым углом булавкой – инструмент для создания звука капели.
Возьмем обычный карандаш и воткнем в него перпендикулярно (то есть под прямым углом) обычную булавку. Все!
Как теперь на этом инструменте играть? У нас получился специальный, супермузыкальный инструмент, который издает звук капли воды, падающей с высоты.
Возьмем карандаш за кончик и слегка стукнем, как бы соскользнем булавкой об угол любого твердого и массивного предмета, например об угол стола. На фотографии показано стрелками, что надо ударить легонько вниз и сдвинуть на себя. Если сразу не получится, посмотрите внимательно на фотографию еще раз: держать наш инструмент и ударять им о край стола нужно именно так, как там показано.
Стрелки показывают, что надо сверху мягко коснуться (слегка стукнуть) по острому краю твердого стола и потянуть при этом на себя карандаш.
Мы услышим мягкий, почти мяукающий звук падающей капли! В свое время на уроках мы «капали» таким инструментом, немножко, так сказать, безобразничали. Было очень смешно (многое смешно в третьем классе). Учительница удивлялась – вроде бы погода сухая, а где-то капает вода… Но лучше так не делать – я получил хороший нагоняй (когда был раскрыт) и от учительницы, и от родителей… И даже не скажешь, что наука требует жертв.
Между тем в этом простом инструменте скрываются очень интересные законы. Что представляет собой наш инструмент? Булавка – это просто металлический стержень, жестко закрепленный с одного конца. Если по нему ударить, как и в гитарной струне, в нем образуются колебания, которые передаются в воздух, и мы слышим их как звук. Но почему этот звук «мяукает», почему он изменяется по высоте?
Дело в том, что высота, тональность звука зависит от длины стержня (или струны). Так, гитаристы изменяют тональность звука, зажимая пальцами лады, прижимая струну к деревянному грифу. Струна становится то короче, то длиннее – и поэтому звук изменяет свое звучание. Кстати, специальные металлические «порожки» на гитарном грифе нужны как раз для того, чтобы струна прижималась всегда в строго определенном месте и давала звук точно отмеренной высоты. На скрипке, скажем, таких порожков нет, поэтому из скрипки можно извлечь звуки буквально любого тона, в этом принципиальное отличие скрипки от гитары.
Когда мы при ударе «скользим» булавкой по краю стола, этот край представляет собой как бы такой «порожек», или палец скрипача, зажимающий струну. Он «бежит» вдоль металлического стержня, при этом звучащая часть (между краем и свободным концом булавки) становится короче, тональность звука повышается – и мы слышим «мяуканье».
Видно, капля воды при падении тоже изменяет свою форму при ударе таким образом, что звук от удара повышается за короткое время, поэтому звук от булавки и капели похож.
Вот такой у нас получился инструмент!
80 Телескоп из очков
Для опыта нам потребуются: очки дальнозоркого человека, очки близорукого человека.
Звездное небо прекрасно! Между тем большинство городских жителей видят звезды очень редко и, наверное, поэтому не знают их. Есть такое понятие – «световое загрязнение атмосферы». В городах оно очень сильное, слабые звездочки проблескивают через сияние огней… Но тем не менее, когда горожане попадают в деревню, в лес, на природу, они восхищаются звездами. Особенно яркие звезды в тропиках, кажутся просто висящими фонарями.
А люди с древности интересовались звездами, придумывали в небе разные фигурки и мифы про звездных жителей. Звезды помогали найти путь в морях и океанах, в пустынях и лесах.
Чтобы разглядеть небо лучше, придумали телескоп. Сейчас телескоп (если есть деньги) можно купить в магазине. Однако раньше это себе позволить было нельзя. Не было таких магазинов! И ученые, такие знаменитые, как Галилео Галилей, Ньютон, Тихо Браге и много других, сами изготавливали себе телескопы из стеклянных линз. Первые телескопы были ужасно примитивными, очень простыми и, на наш современный взгляд, даже смешными. Ну посудите сами, одна из линз висела на длинной веревке или прикреплялась к шесту, а с другой ученый бегал по земле так, чтобы на несколько секунд уловить изображение планеты или звезды! Но такие телескопы позволили открыть кольца Сатурна, пятна и полярные шапки Марса, обнаружить атмосферу на Венере – и все это с Земли! Скажем, когда Михаил Ломоносов на короткое мгновение увидел, что Венера, «утренняя звезда», проходя на фоне Солнца, на секунду озарилась «сиянием», сделал правильный вывод – это светится атмосфера вокруг планеты!
Мы можем сделать простой опыт – сделать из подручных средств самый простой телескоп прямо дома, в квартире.
Для этого нам понадобятся очки – одни от близорукого человека, другие – от дальнозоркого. Обычно у пожилых людей развивается дальнозоркость, так что эти очки надо выпросить у бабушки или дедушки. А «близорукие» очки часто носят молодые люди или люди среднего возраста. Скорее всего это мама, папа, старший брат или сестра.
Давайте посмотрим, как идут лучи в простейшем телескопе.
Лучи от предмета обычно идут прямо, параллельными линиями. Они наталкиваются на линзу и поворачивают. Почему они поворачивают, я еще поясню позже – пока просто поверьте. Лучи собираются в точку, если поверхность линзы правильно выточена, имеет нужную форму (см. рисунок).
Это собирающая линза, та, которая бывает в «близоруких» очках. А если сделать линзу другой формы? Получится, что лучи будут рассеиваться.
А теперь что будет, если мы перед глазом поставим рассеивающую линзу, а потом собирающую? На рисунке я постарался пояснить, что произойдет.
Наш глаз находится справа и смотрит без всяких линз. Лучи света от предмета (маяк) идут прямо, и мы видим ровно такую же высоту, какая есть «на самом деле». Понятно, что опыт и бинокулярное зрение (то, что у нас два глаза) подсказывают нам, какой высоты и на каком расстоянии находится этот маяк. Затруднений нет.
А теперь поставим линзы – одна соберет лучи «в кучку», а вторая рассеет. Но мы подберем расстояние между ними и их форму так, чтобы при рассеивании в конце концов лучи шли опять параллельно друг другу и прямо. И окажется, что маяк для создания «такого же» изображения должен быть как бы существенно выше! И глазу кажется (и мозгу вместе с ним), что башня выше, чем она «на самом деле».
А теперь уже опыт!
Берем и надеваем очки для близоруких, с рассеивающей линзой. Видно плохо, в тумане (если только у вас нет близорукости). Если близорукость есть, наденьте собственные очки, ничего страшного. Физика не подведет. Теперь возьмите в руку очки для дальнозорких и посмотрите через них, держа их на вытянутой руке. Вы увидите, что предметы кажутся больше! Я сделал фотографию, надев «близорукие» очки прямо на фотоаппарат. Видно, что картинка на стене кажется увеличенной почти в два раза! Она немного нерезкая, но это потому, что телескоп у нас уж больно примитивный. Зато мы теперь понимаем устройство простейшего телескопа!
Чтобы картинка стала резкой, надо менять расстояние между линзами и подобрать такое, когда изображение будет в фокусе. Для этого у всех подзорных труб и телескопов есть возможность изменять такое расстояние – винтами, втулками и так далее.
Чтобы сделать это фото, я надел одни очки прямо на фотоаппарат, а через вторые фотографировал. Видно, что висящая на стене картина через стекло вторых очков видна почти в два раза большей. Это модель простейшего телескопа.
Осталось еще понять, почему же поворачивает свет в стекле? Об этом в следующей главе.
81 Почему луч поворачивает в стекле, или Как работает линза?
Сейчас я поясню, почему стекло преломляет свет, то есть почему лучи «поворачиваются», изменяют свое направление, попадая в линзу или призму. Сразу надо сказать, что лучи поворачиваются или преломляются не всегда. А только если попадают на стекло под некоторым углом.
Давайте представим себе очень простую картину. По хорошей асфальтовой площади идет быстрым шагом, сохраняя строй, ряд солдат. Я нарисовал их кружочками на рисунке. Они стараются и держат строй, направление фронта, или линия строя ровная, и все хорошо. И тут прямо перпендикулярно движению солдат попадается край пашни, в которой вязнут ноги, и все солдаты начинают идти в два раза медленнее, увязая в глине. Что произойдет с направлением строя? Да ничего. Все одновременно наступят на край пашни и все одновременно станут двигаться медленнее.
Как на рисунке.
Но представим теперь, что край пашни попался не ровно по линии строя, а под углом! Что произойдет?
Произойдет занятная вещь. Каждый солдат будет продолжать двигаться в том же направлении, что и двигался. Но одни солдаты (внизу рисунка) попадут на пашню раньше, а другие – позже. И окажется, что часть солдат уже увязла и движется медленнее, а другие еще идут быстро! Так что линия фронта, или передний ряд, образованный солдатами, как бы начнет поворачиваться!