Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей - Александр Дмитриев 15 стр.


Из всей этой запутанной картины нам ясен очень простой вывод: верхнее крыло обтекается быстрее воздухом, чем нижнее! Все!

Что из этого следует? Что на верхнее крыло начнет действовать сила больше, и бумеранг начнет поворачиваться в воздухе. На него как будто бы надавили невидимым пальцем так, что его верхнее крыло начнет отклоняться в сторону выпуклой стороны.

И тут начинается самое интересное! Это все мы описывали так называемые аэродинамические силы. Это силы, которые возникают в потоках газов. А есть еще другие силы, которые тоже вступают в игру. И здесь мы опять должны для понимания познакомиться с таким занятным прибором, как гироскоп.

Все в детстве играли с волчком. Крутишь его – и он стоит на кончике! И какие-то загадочные силы удерживают его от падения. А остановится – и падает.

У наших предков, кстати, была занятная игра – «кубарик». Из дерева вырезали волчок, раскручивали его. Для этого на него наматывали веревочку и дергали ее, придерживая кубарик пальцем. Кубарик раскручивался и стоял на кончике. Чтобы он не падал, его подстегивали маленьким кнутиком. Задача была заставить кубарик крутиться как можно дольше.

А ученые придумали прибор, состоящий из волчка (металлического обычно), который закреплен в специальных рамках и может вращаться свободно в любом из направлений. Посмотрите, на фотографии лабораторный гироскоп, доставшийся мне в наследство от моего папы, – этот гироскоп участвовал в создании систем наведения для первых советских ракет!

Настоящий лабораторный гироскоп. Стрелками показаны рамки.

Видно, что в центре – волчок, он может вращаться. Он закреплен в круглой рамке, которая в свою очередь закреплена еще в одной рамке – а та, в свою очередь в третьей. Я показал их стрелками.

Если быстро-быстро раскрутить волчок (в настоящих гироскопах это бешеные скорости, например двадцать тысяч оборотов в минуту!), то он будет сохранять свое положение в пространстве. Как ни крути гироскоп за внешнюю рамку, а ось волчка будет всегда показывать в одном и том же направлении.

Но если при этом надавить (пальцем) на одну из рамок, волчок начнет поворачиваться. Его движение описываются очень сложными уравнениями Эйлера (очень умный был физик). Но для нас важно, что, если на вращающееся тело начать прикладывать со стороны силу, это тело начнет поворачиваться.

Движения рамок и гироскопа описываются уравнениями Эйлера третей степени. Но бумеранг мы обязательно сделаем!

Например, если волчок вращается, как на картинке по стрелке, слева направо и мы надавим на вторую рамку справа налево, то неожиданно первая рамка гироскопа начнет поворачиваться вниз! Совсем не в том направлении, в котором мы давим на другую рамку.

Правило простое, несмотря на все сложные уравнения Эйлера: поворачивается гироскоп всегда так, чтобы все рамки совместились и приложенная сила оказалась совпадающей с направлением вращения, как бы помогала крутиться волчку. Но это так, для тех, кому интересно.

Представим же теперь, что этот гироскоп – летающий. А ведь наш бумеранг и есть вращающийся волчок! Только рамок у него нет, да они ему и не нужны – ведь он во время полета свободно висит в воздухе, так что ведет он себя словно настоящий волчок гироскопа, подвешенный в рамках.

Ну вот, мы добрались почти до конца теории.

Мы помним, что на верхнее крыло нашего бумеранга действует опрокидывающая сила. От этого вращающийся бумеранг начнет не заваливаться набок, как можно было бы ожидать, а как настоящий гироскоп начнет прямо в воздухе заворачивать налево! То есть поворачиваться так, чтобы действующая на него сила действовала в том же направлении, что и вращение бумеранга. Но при этом на него все так же будет действовать опрокидывающая сила, ведь, поворачивая, бумеранг начинает двигаться немножко в другом направлении, – и все повторяется, он опять чуть-чуть повернет налево и так далее.

И бумеранг начнет описывать красивый круг, постоянно поворачивая налево!

При этом постепенно скорость вращения самого бумеранга будет падать, разница между скоростью верхнего и нижнего крыла будет все меньше, и бумеранг перестанет вести себя как гироскоп. Что при этом произойдет? Он начнет помимо поворота налево еще и заваливаться набок – и вернется к нам в руки, уже просто вращаясь в воздухе, как лопасти вертолета, «лежа» в горизонтальном положении! Все!

Уф, а теперь – кто дочитал – за дело! Сделаем быстренько хороший, возвращающийся бумеранг.

Как я и говорил, надо взять две обычные деревянные линейки сантиметров по пятьдесят длиной. Их обычно делают из сосны, точно так же, как детали первых самолетов. На фотографии видно, как надо расчертить эти линейки для обработки. Обе линейки обрабатываются совершенно одинаково. В центре оставить квадратик. В этом месте они будут склеиваться друг с другом. Квадратик, естественно, должен быть шириной с эту же линейку.

Затем вдоль крыла проводится линия, отступающая на одну треть сверху с правой стороны и на одну треть снизу – с левой стороны. Как на фото.

На фотографии: линейки расчерчиваются для обработки вот так.

На следующей фотографии центральная часть дана более подробно.

Так надо расчертить оба крыла бумеранга. На фото – средняя часть.

Видно, как отходят от квадрата в центре две линии. Мы будем обрабатывать напильником поверхности так, чтобы они «опускались» от нарисованной линии к краям линейки. Таким образом, у правого крыла бумеранга передняя часть будет более «тупая», а сзади будет пологий «спуск». На схеме это видно. Нижняя сторона не обрабатывается вообще. Она должна быть плоской.

Я так подробно описываю все это, чтобы опыт точно получился.

А вот я сфотографировал, как это уже получилось после обработки напильником. Повторяю, высокая точность здесь не нужна, главное, чтобы более-менее гладко было обработано. Видите, я просто закруглил края. Один более круто, другой более полого.

На фото виден профиль крыла бумеранга. На самом деле поверхность должна просто быть более-менее выпуклой, а нижняя сторона – плоской.

Если теперь сложить эти обработанные линейки, то мы получим крест, каждое крыло которого совершенно одинаково по форме.

Так будет выглядеть бумеранг после склейки. Только уголки закруглим.

Теперь надо обязательно закруглить уголки у крыльев. Это не имеет отношения к аэродинамике. Просто иногда бумеранг попадает в полете не туда, куда надо, и лучше, если вращающийся винт стукнет гладким, а не острым. Страшного ничего нет, бумеранг слишком легкий, чтобы действительно что-то повредить. А вот боевые бумеранги, которые в размере больше метра и делаются из твердого дерева, легко позволяли охотникам убивать таких крупных зверей, как кенгуру!

На фотографии видно, что я скруглил уголки на концах крыльев бумеранга. На всякий случай, для безопасности.

Теперь еще верхнюю поверхность надо обработать шкуркой (наждачной бумагой). Сверхгладкой поверхности не надо, надо убрать зазубрины от напильника. Все равно потом еще покрасим бумеранг, это сгладит неровности.

Проще всего сшить крылья нитками, предварительно склеив.

Что мы делаем дальше? А мы в центральном квадрате просверливаем четыре дырочки в обоих линейках. Склеиваем так, чтобы дырочки совпали (я пользуюсь обычным «быстроклеящим» клеем). А после склеивания обе линейки сшиваю обычной ниткой, будто пришиваю пуговицу. Наматываю побольше ниток и заливаю клеем. Все. Бумеранг почти готов! В принципе его уже можно кидать! На фотографии видно, как я сшил две линейки. И видно необработанную сторону бумеранга. Видите, я ее даже не трогал – не обрабатывал никак. После покраски, конечно, цифры пропадут, и все станет красиво.

Бумеранг просто сшивается, предварительно надо склеить крылья, а потом промазать клеем нитки для надежности.

Тем, кто хочет больше заниматься бросанием бумеранга и меньше его поисками, рекомендую покрасить бумеранг краской. Сгодится любая водостойкая краска, например из аэрозольных баллончиков. Но я, например, красил гуашью и сверху покрывал тонким слоем лака.

Помимо красоты и улучшенной аэродинамики, это еще и придает дополнительную крепость бумерангу. Особенно если покрыть лаком.

Как же его бросать? Я сделал несколько фотографий.

На фотографии видно, что бумеранг держат вертикально и бросают ровно вперед. При этом придают ему вращательное движение, как будто колесо катится над землей. Моделью служит моя любимая жена Людмила.

На этой фотографии видна одна из ошибок при броске бумеранга. Его слишком наклонили влево. При таком броске он врежется в землю.

Если же его при броске отклонить вправо, то он взлетит в небо и упадет резко «колом» на землю. Это тоже ошибка.

Бумеранг должен в момент броска быть в строго вертикальном положении!

Ну что ж, выходите на открытое место, проследите, чтобы вокруг не было людей и животных, – и покидайте бумеранг. Поверьте мне, а уж я их переделал десятки – это такое удовольствие!

87 Еще о точке росы, или Паровая баня

Мы уже сталкивались с понятием «точка росы», когда пар переходит из газообразного в жидкое состояние. У этого физического явления есть много полезных вариантов применения. Например, в детективных рассказах или в книгах про шпионов часто описывается ситуация, когда надо вскрыть конверт незаметно. Что делают в таком случае?

Берут чайник, нагревают его. Дожидаются, когда из носика начинает бить струя пара. Потом держат письмо над паром так, чтобы он попадал на заклеенную полоску.

Мы уже знаем, что произойдет. Письмо относительно холодное, и пар, попадая на него, начинает превращаться в жидкость. Мельчайшие капельки пропитывают бумагу и разжижают клей. Письмо через некоторое время можно открыть, не порвав бумагу, прочитать – и потом заклеить по новой, незаметно.

Тысячи шпионов проделывали этот опыт… но знали ли они про физику и «точку росы», используя паровую баню для открывания секретных писем? Сомневаюсь… Так иногда люди физику не знают, а законы используют. А если применить этот принцип к более благородным вещам, чем открывание чужих писем, то можно придумать и другие полезные варианты. Например, если что-то клеили из бумаги и неправильно склеили, а портить (мочить водой) бумагу нельзя.

А вот еще вариант: если нужно протереть очки или стеклянную поверхность, мы обычно дышим на это стекло – пар изо рта превращается в тонкий слой воды, оседая на более холодной поверхности. И можно протереть стекло. Правда, лучше для этого пользоваться специальными жидкостями или просто промыть стекло с мылом и вытереть газетами, потому что иначе стекла можно испортить. А почему – в следующей маленькой главе…

88 Как протирать очки

Итак, когда мы дышим на очки, появляется тонкий слой воды. Берем тряпочку и протираем… И на стекле образуются мелкие царапины! Если так делать часто, то постепенно стекло портится и теряет прозрачность. Разберемся. Во-первых, почему от царапин стекло теряет прозрачность? Вопрос вроде бы простой, а на самом деле я проверял – немногие могут ответить точно. Давайте посмотрим на картинку.

Царапина, как видно на увеличенной картинке, представляет собой острое углубление в стекле. То есть образуется как бы канавка. (Кстати, стекло я обозначил на рисунке штришками – так настоящие инженеры обозначают стекло на чертежах.) Образуется царапина потому, что в воздухе плавает пыль, оседает на тряпочках и стеклах. А часто эти пылинки по своей твердости гораздо тверже стекла. И хотя они почти не заметны обычному глазу, работают как настоящий резец.

Так вот, на картинке изображены лучи света, падающие на поверхность стекла. Для простоты положим, что они падают перпендикулярно к поверхности. В таком случае они свободно проходят через стекло (немного, правда, отражаются, но это не влияет на тот путь, по которому идут лучи света) и попадают дальше нам в зрачок.

Но та часть света, тот луч, который упал на царапину, попадает на наклонную поверхность, то есть падает под углом к стеклу. Мы уже разбирали, что при изменении угла падения траектория луча изменяется, он отклоняется в сторону!

Значит, часть света будет проходить через целые участки стекла и создавать цельную картинку, а некоторая часть, попадающая на царапины, будет отклоняться, рассеиваться, портить изображение!

Поэтому настоящую рабочую оптику (стекла телескопов, биноклей, зрительных приборов) протирают очень аккуратно, специальными составами, часто спиртом. При этом используют мягчайшие кисточки. Главное, при протирке не нажимать сильно, чтобы, даже если пылинка и попала на поверхность, ее смыло потоком жидкости. Потому что иначе она «проскребет» поверхность и загубит технику!

Итак, каждая царапина работает как призма, отклоняющая лучи!

89 Полное внутреннее отражение, или Что такое оптический кабель

Для опыта нам потребуется: кусок стекла, лазерная указка или маленький фонарик.

В современных компьютерных системах устройства между собой «общаются» по оптическим кабелям. Световые сигналы летят по гибкому шнуру, неся информацию из одной точки в другую. При этом, как ни изгибай кабель, свет не «выскакивает» из шнура, а следует по любой извилистой траектории.

Как этого добиваются?

Мы знаем, что лучи поворачивают в сторону, если падают под углом на поверхность стекла (или другого прозрачного вещества). Причем этот угол зависит от разницы скорости движения света между тем веществом, откуда прилетел луч, и тем, в которое он входит.

Давайте рассмотрим картинку.

Луч, обозначенный цифрой 1, идет внутри стекла ровно перпендикулярно к поверхности. Он проходит, не изменяя направления. Луч 2 – немножко под углом. Он отклоняется немного в сторону. Луч 3 отклоняется еще сильнее… Так, если угол изменяется, то постепенно выходящий луч все ближе подходит к самой поверхности стекла. Наступает такой момент, что луч достигает критического угла и его продолжение, выходящее из стекла, уже практически «скользит» по поверхности. На нашем рисунке это черный луч 5.

Все! Все остальные лучи, идущие под еще большими углами, будут отражаться от внутренней поверхности стекла и уходить «внутрь»!

Посмотрим, что будет, если луч света войдет в тонкую стеклянную трубку или лист стекла «с торца».

Луч немножко изменит свой угол и пройдет через стекло некоторое расстояние, после чего наткнется на внутреннюю поверхность стекла. Он отразится внутрь и побежит, пока снова не наткнется на поверхность и тоже в соответствии с законами физики отразится внутрь, только уже в другую сторону! И так будет продолжаться, пока световой луч не затухнет. Понятно, что свет немножко «гасится», ослабляет свое свечение с расстоянием. Поэтому рано или поздно, конечно, свет затухнет. Но до тех пор так и будет бежать вперед и вперед.

Те, кто разрабатывал системы связи для передачи информации, воспользовались этим физическим законом и сделали очень простую (на первый взгляд) вещь: создали кабель, состоящий из огромного количества тонких и гибких стеклянных трубочек. Самое главное (и самое сложное в производстве таких кабелей), что каждая трубочка на обоих концах кабеля находится точно в том же месте и в начале, и в конце. Поэтому изображение не искажается. Чтобы пояснить, посмотрим на следующую картинку. Предположим, что мы положили в ряд пять трубочек, причем они не «перепутываются», а идут, изгибаясь, рядом до самого конца. Длина у них одинаковая. Будем светить разным светом (красным, зеленым, желтым и т. д.) в каждую из трубочек с одной стороны, в начале.

В конце каждая трубочка засветится тем светом, которым в него посветили в начале! И мы увидим точно такую же картинку, что и передали.

Если эти ряды трубочек положить друг на друга и создать «квадратик», то можно уже создавать целые картинки, как в телевизоре. Вот и вся хитрость. Именно так устроены современные оптические кабели, которые связывают компьютеры и другие устройства.

* * *

А как увидеть это своими глазами? Для этого проделаем простой опыт. Возьмем любой кусок стекла, например оконного. И в темноте посветим узким лучом света с торца. Лучше всего для этого подходят лазерные указки, которые продаются в любом ларьке. Или даже маленький фонарик. Посмотрите на следующую фотографию.

Видно, как светится торец куска стекла, – это я свечу в него фонариком. Поверхность же стекла практически не светится. Свет не выходит наружу. На другой фотографии видно, что я свечу фонариком слева под довольно большим углом в торец стекла. Поскольку фонарик шире, чем стекло, верхняя его часть светит прямо на поверхность сверху. И луч освещает первую треть стекла. Потом идет темный кусок. Но вдруг мы видим, что слева из торца вырывается свет! Эта та часть луча, которая от фонарика вошла в торец и пробежала, отражаясь внутри от стенок, до самого выхода из стекла!

На фото: светится торец стекла, верхняя часть существенно темнее. Свет распространяется внутри.

На фотографии видно, как свет проходит лучом внутри стекла и вырывается наружу в дальнем торце. Подставкой служит ноутбук IBM – у него прекрасная черная поверхность, как раз для съемок.

Назад Дальше