Геном - Мэтт Ридли 19 стр.


Минисателлиты впервые были обнаружены совершен­но случайно Алеком Джеффри (Alec Jeffreys) и его помощ­ницей Вики Уилсон (Vicky Wilson) в 1984 году. Они изучали эволюцию генов, сравнивая между собой гены человече­ского мышечного белка миоглобина и аналогичного белка тюленей, и вдруг в середине гена обнаружили серию повто­ряющихся последовательностей ДНК. Поскольку «слова» во всех минисателлитах почти одинаковы, но количество повторов разное, они оказались удобными элементами для обнаружения их в геноме и подсчета отличий между инди­видами. Оказалось, что число повторов в одном и том же месте на хромосоме настолько изменчиво, что минисател­литы могут служить генетическими «отпечатками пальцев». Полоски минисателлитов на генетической карте хромо­сомы выглядят, как штрих-код на товарах в супермаркете. Джеффри сразу же осознал значимость своего открытия. Забыв о гене миоглобина, который был темой его исследо­ваний, он разрабатывает различные методы применения минисателлитов на практике. Созданием базы данных ми­нисателлитов первыми заинтересовались иммиграцион­ные службы. Они решили, что с помощью биологических тестов можно определять, есть ли у человека, подавшего заявление на получение туристической визы для поездки в какую-либо страну, близкие родственники, которые уже ранее проникли в эту страну и осели там. Генетическая идентификация на практике показала всю свою мощь. Но наиболее широкое применение этот метод нашел в крими­налистике, о чем речь пойдет ниже (Jeffreys A. J. et al. 1985. Hypervariable 'minisatellite' regions in human DNA. Nature 314: 67-73).

2 августа 1986 года неподалеку от деревни Нарборг (Nar- borough) в английском графстве Лестершир (Leicestershir) в кустах терновника было обнаружено тело пятнадцатилет­ней школьницы. Даун Эшуорс (Dawn Ashworth) была изна­силована и убита. Неделей позже полиция арестовала мо­лодого грузчика из местного госпиталя Ричарда Бакланда (Richard Buckland), которому было предъявлено обвине­ние. На этом можно было бы поставить точку. Бакланд уже был на пути в тюрьму за изнасилование и убийство. Но по­лиции не давал покоя другой случай изнасилования и убий­ства пятнадцатилетней школьницы, Линды Манн (Lynda Mann), здесь же в Нарборге тремя годами ранее. Ее тело было брошено посреди поля, и многое указывало на то, что оба изнасилования совершил один и тот же человек. Но Бакланд отказывался признаться в совершении убийства.

О новом методе Алека Джеффри полицейские узнали из газет. Джеффри работал в Лестершире всего в 10 милях от Нарборга. Полицейские обратились к Джеффри с прось­бой помочь установить убийцу Линды Манн. Он согласился попробовать. Полицейские предоставили ученому образцы спермы с обоих мест преступления, а также образец крови Бакланда.

Получение и анализ ДНК были связаны с некоторы­ми проблемами, но через неделю работа была завершена. Действительно, два образца спермы были идентичны­ми, но они не совпадали с образцом крови. ДНК из крови Бакланда содержала совершенно иные последовательности минисателлитов. Бакланд не мог быть убийцей.

Полиция Лестершира считала, что, должно быть, Джеффри допустил в своих методах какую-то ошибку — ре­зультат совершенно абсурдный. Джеффри повторил тест. Независимую экспертизу провели в лаборатории мини­стерства внутренних дел Великобритании. Результаты со­впали. Полиции ничего не оставалось делать, как закрыть дело в отношении Ричарда Бакланда. Впервые в истории криминалистики невиновность человека была доказана по его геному.

Сомнения у полиции все же оставались, ведь Бакланд при­знал себя виновным в убийстве второй школьницы. Но поз­же полицейские убедились, что генетика предоставляет наи­более совершенные методы как для выявления преступника, так и для снятия ложных обвинений и самооговоров. Через пять месяцев после убийства Эшуорс полиция взяла анализы крови у 5 500 жителей Нарборга и окрестных селений для проведения генетического тестирования. Ни один из образ­цов не совпал с образцами ДНК с мест преступлений.

Но шило в мешке не утаишь. Однажды рабочий пекар­ни по имени Ян Келли (Ian Kelly) рассказал своим друзьям, что сдавал анализ крови, хотя и не проживал в Нарборге. Его об этом попросил другой рабочий пекарни родом из Нарборга — Колин Питчфорк (Colin Pitchfork). Питчфорк говорил Келли, что полиция имеет на него зуб и хочет по­садить без всяких причин. Как только коллеги Келли сооб­щили об этом в полицию, Питчфорк был арестован и вско­ре признался в обоих убийствах. На этот раз его признание подтвердил и генетический тест. Минисателлиты в ДНК из крови Питчфорка точно совпали с образцами, взятыми с мест преступления. 23 января 1988 года Питчфорк был приговорен к пожизненному заключению.

Генетический фингерпринт сразу же стал наиболее вос­требованным и надежным методом современной кримина­листики. Дело Питчфорка стало убедительной демонстра­цией возможностей метода и задало тон в криминалистике на десятилетия вперед. Это метод, который четко и убеди­тельно может показать невиновность человека, несмотря на множество свидетельств и улик, доказывающих его вину. И только одно упоминание этого метода заставляет пре­ступников признаться в своих преступлениях, поскольку им хорошо известна надежность и точность генетического фингерпринта. При умелом использовании для достовер­ного установления личности человека достаточно ничтож­ного количества биологического материала: выделений из носа, слюны, фрагментов волос и костей, десятилетия про­лежавших в земле.

После дела Питчфорка генетический фингерпринт стал одним из наиболее распространенных методов криминали­стики. Так, в Великобритании только за 1998 год на судеб­ную экспертизу было взято 320 ООО проб ДНК, что позво­лило установить вину 28 ООО преступников, и вдвое боль­ше людей были оправданы благодаря этому методу. С тех пор техника была усовершенствована. Сейчас сравнение проводят по единственной, наиболее изменчивой серии минисателлитов. Упростить генетический фингерпринт позволили методы амплификации ДНК. Теперь минисател- литы, или даже микросателлиты, действительно выглядят, как штрих-код на полосках агара. Для достижения большей точности анализу подвергается не только длина минисател- лита, но и последовательность «букв» в нем. Впрочем, есть много дискредитирующих примеров предвзятого исполь­зования этого метода в суде, что не удивительно, раз уж юристы берутся за дело. (В большинстве случаев, когда на основе генетического фингерпринта в суде принимались ложные решения, причина была не в самом методе, а в че­ловеческой неграмотности в вопросах статистики. Так, суд присяжных скорее оставит результаты генетического теста без внимания, если объявить, что ошибка метода составля­ет 0,1%. Напротив, присяжных легко убедить в достовер­ности результатов, если сказать, что метод позволяет четко идентифицировать одного человека из тысячи. Сказано одно и то же, а эффект разный.) (Reilly P. R., Page D. С. 1998. We're off to see the genome. Nature Genetics 20: 15-17.)

Генетический фингерпринт произвел революцию не только в криминалистике, но и в других областях медици­ны и биологии. Этот метод был использован в 1990 году для того, чтобы убедиться в подлинности эксгумированного тела Иозефа Менгеле (Josef Mengele). Этот метод исполь­зовался также в нашумевшем деле, касавшемся президента

США и запятнанного платья Моники Левински (Monica Lewinsky). Этот же метод позволил вывести на чистую воду лже-наследников Томаса Джефферсона (ThomasJefferson). Наверное, наиболее востребованным этот метод стал для установления отцовства. В 1998 году частная компания Identigene вдоль всех трасс Америки расставила свои ре­кламные щиты с надписью «КТО ОТЕЦ? ЗВОНИТЕ 1-800- DNA-TYPE». Компания принимала по 300 звонков в день, несмотря на то что стоимость одного теста составляла 600 долл. Звонки поступали как от матерей-одиночек, желаю­щих прищучить убежавших отцов, так и от отцов, встре­воженных тем, что ребенок уж слишком похож на соседа. Примерно две трети случаев обращений матерей под­тверждались тестированием. Неизвестно, перетянула ли чаша горечи мужчин, узнавших о неверности своих супруг, чашу облегчения от подтверждения отцовства. Не удиви­тельно, что в Великобритании первые частные компании по выяснению отцовства подверглись резкой обструкции со стороны прессы, поскольку согласно общественному мнению такими методами могут пользоваться только госу­дарственные организации, но не частные компании.

Отвлечемся на более романтическую историю. Методы генетическогофингерпринтапозволилиузнать, зачемпоют птицы. Вы замечали, что дрозды, малиновки и соловьи продолжают петь уже после того, как обзавелись гнездами и птенцами? Это как будто противоречит представлению о том, что птицы поют исключительно для привлечения самок. В конце 1980-х годов орнитологи начали генетиче­ское тестирование птиц с целью установить, отцом каких птенцов и в чьих гнездах являются самцы певчих птиц. К удивлению, было обнаружено, что в птичьих семьях, чья верность служила нам примером в сказках и рассказах и ко­торые так дружно вместе строят гнездо и нянчат птенцов, очень часто птенцы оказывались не от «супруга». Измены оказались гораздо более частым явлением, чем этого мож­но было ожидать (видимо, потому что и у птиц самки де­лают это под большим секретом). Первые эксперименты с тестированием ДНК вызвали широкий интерес у ученых, изучающих другие организмы. На основе многочисленных данных была сформулирована теория о «семенном сорев­новании». Эта теория объясняла, почему семенники у шим­панзе в четыре раза больше, чем у горилл, хотя гориллы почти втрое больше по размеру, чем шимпанзе. Горилла-са­мец монополизирует свой гарем, поэтому его семени не с кем соревноваться. В стае шимпанзе беспорядочные поло­вые связи. Шанс оставить потомство есть только у тех сам­цов, которые беспрерывно занимаются оплодотворением. Соревнование между самцами шимпанзе идет на уровне объемов производимого семени. Тесты также объяснили, почему птицы продолжают петь все лето. В заботах о семье они не забывают «сходить налево» (Ridrey М. 1993. The Red Queen: sex and the evolution of human nature. Viking, London).

Хромосома 9 Болезни

На хромосоме 9 лежит хорошо известный ген — ген груп­пы крови. Задолго до того как появился генетический фин­герпринт, в криминалистике широко использовалось опре­деление группы крови. Если на месте преступления были пятна крови, то с помощью сравнительного анализа можно было установить, совпадает ли группа крови пятен с груп­пой подозреваемого. Если группы были разными, с челове­ка снималось подозрение, если одинаковые — это ничего не доказывало, так как вероятность случайного совпадения очень высока. Поскольку судьи и присяжные никогда не были сильны в науке, на неопределенности данных о груп­пе крови можно было сыграть как в сторону защиты, так и в сторону обвинения. В 1946 году суд Калифорнии признал Чарли Чаплина отцом нескольких незаконнорожденных детей, несмотря на полное несоответствие их групп кро­ви, оправдываясь тем, что эти данные ненадежны. В наши дни определение группы крови в криминалистике уходит в прошлое, уступая место более совершенному методу уста­новления идентичности человека и родственных связей по изменчивым минисателлитам (см. предыдущую главу). Точное определение группы крови гораздо важнее в меди­цине, поскольку переливание крови другой группы или пе­ресадка органов могут оказаться фатальными. Кроме того, определение группы крови может много рассказать нам об истории миграции племен древних людей, хотя и тут были открыты более интересные гены, что отодвинуло анализы

крови в антропологии на второй план. Но с 1990 года инте­рес к белкам группы крови вновь возрос. Их изучение про­лило свет на эволюцию генов и причины генетического разнообразия людей.

Наиболее известная и широко используемая система анализа крови позволяет разделить всех людей на четыре группы. Эта система впервые была предложена в 1900 году, и сразу же возникли три разных принципа именования групп, что до сих пор вносит путаницу. По системе Мосса (Moss) группа крови I — это то же самое, что группа IV по системе Янеки (Jansky). Поэтому предпочтение было ока­зано альтернативной системе групп крови, предложенной Виннесом (Viennese), которая получила международное признание. В ней вместо номеров используются буквы: О, А, В и АВ. Врач Карл Ландштайнер первым описал, что про­исходит после переливания не той группы крови: «lytischen und agglutinierenden Wirkungen des Blutserums» — слипа­ние и разрушение клеток крови. Но взаимосвязи между группами крови не так-то просто было объяснить. Люди с группой А могут быть донорами для людей с группами крови А и АВ, с группой В — для В и АВ. Кровь группы АВ можно переливать только людям с этой же группой крови, а вот кровь группы О — всем, это универсальные доноры. Эти группы крови встречаются по всему миру независимо от расовой или национальной принадлежности людей. Так, в Европе примерно у 40% населения группа крови О, еще у 40% — А, у 15% — В и у 5% — АВ. Похожие соотношения и на других континентах, за исключением коренного насе­ления Америки, преимущественно имеющего группу крови О. (Только у североканадских индейцев встречается группа крови А, а у эскимосов — АВ и В.)

Лишь в 20-х годах прошлого столетия стало ясно, что группы крови наследуются генетически, а сами гены были открыты только в 90-х годах. Группы А и В связаны с нали­чием двух «кодоминантных» версий одного и того же гена, а группа О представляет собой рецессивный фенотип, связанный с серьезной мутацией этого гена. Ген лежит на хромосоме 9 в конце длинного плеча. Полный «текст» гена состоит из 1 062 «букв», разделенных на шесть коротких и один длинный экзон («абзац»). Экзоны гена разбросаны по хромосомному локусу длиной 18 ООО «букв». Это средней длины ген, в середине которого находятся пять интронов разной длины. Ген кодирует белок галактозил-трансфера- зу— фермент, катализирующий одну из биохимических реакций (Crow J. F. 1993. Felix Bernstein and the first human marker locus. Genetics 133: 4-7).

Версии гена А и В отличаются друг от друга всего по семи нуклеотидам, причем три из них синонимичны, т.е. мута­ция не ведет к изменению соответствующей аминокислоты в белке. Остальные четыре мутации в позициях 523, 700, 793 и 800 приводят к изменению белка. У людей с группой крови А в этих позициях находятся «буквы» С, G, С и G; а у людей с группой В — G, А, А, С. Но это не абсолютная за­кономерность, у ряда людей встречаются промежуточные формы гена, а у некоторых людей с группой А в конце гена пропадает еще одна «буква». Но этих незначительных из­менений вполне достаточно, чтобы иммунная система че­ловека отличала конечные белки и отвечала аллергической реакцией на чужую группу крови (Yamomoto F. et al. 1990. Molecular genetic basis of the histo-blood group ABO system. Nature 345: 229-233).

У людей с группой О ген отличается единственной мута­цией от гена группы А, но в этот раз вместо замены «буквы» происходит ее выпадение (делеция). В позиции 258 отсут­ствует «буква» G, но результат этой мутации сокрушитель­ный. Делеция нуклеотида приводит к так называемому сдви­гу рамки считывания, в результате чего весь «текст» гена, следующий за мутацией, превращается в полную галиматью. (Если бы природа использовала генетический код, предло­женный в 1957 году Фрэнсисом Криком (Francis Crick), то мутаций со сдвигом рамки считывания не существовало бы.) Генетический код считывается словами по три буквы без пробелов и знаков препинания. Например, возьмем ряд трехбуквенных слов: раз был так рад где вас нет бал тут шел там вал. Я согласен, не очень познавательно и совсем не поэтично. Но дело не в этом. Заменим в первом слове р на т. таз был так рад ... По крайней мере стало не хуже. Удалим первую букву, но при условии, что слова остались трехбуквенными: азбылт акр адг дев асн етбалтутш елт амв. Теперь уже не только смысла фразы, но и слов понятных не осталось. Именно это и произошло с геном АВО у людей с группой крови О. Если из этого гена и получается какой-то белок, то своих каталитических функций он не выполняет.

Но что же при этом изменяется в человеке, кроме груп­пы крови? Люди с группой О во всех сферах жизни чувству­ют себя ничуть не хуже, чем люди с другими группами кро­ви. Онкологические заболевания у них возникают не чаще, они показывают такие же результаты как в спорте, так и в искусстве. Даже в дни разгула евгеники никто не призывал стерилизовать людей с не той группой крови. Группа крови социально и политически нейтральна и от группы крови абсолютно ничто не зависит.

Становится интересным, почему, если группа крови аб­солютно нейтральна, в ходе эволюции сложилось совре­менное соотношение людей с разными группами крови? Было ли чистой случайностью то, что у всех коренных жителей Америки группа крови О? На первый взгляд, это хорошее доказательство теории нейтральной эволюции, предложенной в 1968 году Моту Кимурой (Motoo Kimura). Основная идея теории состоит в том, что ошеломляющее генетическое разнообразие живых организмов стало воз­можным потому, что мутации во многих генах совершенно нейтральны и возникают не в результате естественного от­бора, а в результате его отсутствия. Дрейф генов от общего предка происходит по тем же принципам случайности, по которым капля чернил растекается по промокательной бу­маге. Если бы мы вернулись на миллион лет назад, то обна­ружили бы многочисленные генетические отличия между нами и нашими предками, но в большинстве случаев эти отличия оказались бы совершенно нейтральными во всех отношениях.

Приверженцы «нейтральной» и «селективной» эволю­ции поначалу приняли друг друга в штыки, но когда пыл угас, многие ученые сошлось во мнении, что большинство мутаций, которые мы наблюдаем, совершенно никак себя не проявляют. Чем больше наука постигала строение бел­ков, тем очевиднее становилось, что мутации затрагивают, как правило, те области белков, которые лежат далеко от биологически активных центров, поэтому никак не могут повлиять на химическую активность белка. В одном белке, известном еще у животных кембрийского периода, отме­чено 250 генетических изменений у представителей всего животного мира. Но только шесть из них как-то влияли на его активность (Dean А. М. 1998. The molecular anatomy of the ancient adaptive event. American Scientist 86: 26-37).

И все же в отношении групп крови мы теперь знаем, что в действительности они не так нейтральны, как казалось ранее. Какой-то смысл они все же несут. С 1960-х годов ста­ли поступать факты о взаимосвязи группы крови и диареи. Оказалось, что расстройство желудка у детей с группами крови А и В чаще вызывают кишечные палочки, относящие­ся к разным серогруппам. В конце 1980-х стало известно, что люди с группой крови О более чувствительны к возбудителю холеры. Десятки последующих исследований не только под­твердили эту зависимость, но добавили дополнительные детали. Оказывается, что у людей с группами крови А, В и АВ чувствительность к возбудителю также была специфич­ной для своей группы. Наиболее устойчивыми были люди с группой крови АВ, затем с группой А, а затем — с группой В. Но все они гораздо устойчивее к холере, чем люди с груп­пой крови О. Несмотря на то что люди с группой АВ прак­тически невосприимчивы к этому кишечному заболеванию, я бы все же не рекомендовал им пить воду прямо из луж Калькутты — можно подхватить какую-нибудь другую заразу. Однако было установлено, что микроб Vibrio cholerae у таких людей не вызывает даже расстройства желудка.

Назад Дальше