Астрономической широтой j называется угол O T1 q между плоскостью земного экватора и отвесной линией в данной точке. Геоцентрической широтой j’ называется угол OTq между плоскостью земного экватора и радиусом-вектором данной точки О. Геодезической широтой (обозначения не имеет) называется угол O T2 q между плоскостью земного экватора и нормалью к сфероиду в данной точке. Непосредственно из астрономических наблюдений определяется только астрономическая широта j. Из геодезических и гравиметрических измерений определяется уклонение отвеса в данной точке, т.е. несовпадение отвесной линии с нормалью, которое дает возможность из астрономической широты j получить геодезическую. Уклонение отвеса, как правило, меньше 3" (исключая аномальные места), и в астрономических задачах ими пренебрегают и не делают различия между астрономической и геодезической широтой. Геоцентрическая широта j' вычисляется по формулам аналитической геометрии, связывающим ее с астрономической (точнее, геодезической) широтой. Разность между геоцентрической и астрономической широтой не превышает 12'; на географических полюсах и на экваторе Земли она равна нулю.
§ 129. Общие сведения
Вокруг Солнца движется множество тел, весьма различных но своим характеристикам. Кроме планет, в состав Солнечной системы входят их спутники, астероиды (малые планеты), кометы, метеорные потоки, метеорные тела, межпланетный газ. Планеты Меркурий, Венера, Марс, Юпитер и Сатурн были известны в древности. Уран открыт В. Гершелем в 1781 г. В 1846 г. открыта 8-я планета, Нептун (см. § 57). В 1930 г. американский астроном К. Томбо нашел на негативах медленно движущийся звездообразный объект 15m, который оказался новой, девятой планетой. Ее назвали Плутоном. Томбо в течение многих лет продолжал поиски возможных занептунных планет. Он установил, что в поясе ±7°,5 от эклиптики за орбитой Нептуна нет каких-либо других планет ярче 18m. Спутник Земли Луна - наиболее заметный небесный объект после Солнца. Галилей обнаружил, что вокруг Юпитера также движутся спутники. Впоследствии спутники были открыты у Сатурна, Марса, Урана и Нептуна. Поиски и открытия спутников продолжаются до самого последнего времени. Открытие новых астероидов и комет происходит почти каждый год. Планеты Меркурий, Венера, Земля и Марс по своим физическим характеристикам заметно отличаются от Юпитера, Сатурна, Урана и Нептуна. Меркурий, Венера, Марс и Земля объединяются в одну группу планет типа Земли. Юпитер, Сатурн, Уран и Нептун в другую - группу планет типа Юпитера или планет-гигантов. Наши представления о планетах-гигантах гораздо менее определенны, так как мы не можем пользоваться аналогией с Землей при анализе наблюдений. На дисках Марса, Юпитера и Сатурна заметно множество интересных деталей. Одни из них принадлежат поверхности планет, другие - их атмосфере (облачные образования). В прошлом наблюдениям этих деталей придавалось большое значение, так как они давали единственный способ хотя бы что-то узнать о природе планет. Однако атмосферное дрожание не позволяет при наблюдениях с Земли безгранично улучшать качество изображения даже при использовании самых мощных телескопов. Предел (угловое разрешение 0",2-0",3) был достигнут уже в начале нашего столетия, и сейчас наблюдения деталей на дисках планет ведутся только для регистрации их изменений. Чтобы обнаружить новые детали, более тонкие, чем удавалось раньше, планеты фотографируются с помощью фототелевизионных камер, установленных на борту космических аппаратов. На таких изображениях видны детали в десятки и сотни раз меньшие, чем можно различить с Земли (см. § 134, 135, 136 и 137). Большую роль в изучении поверхности и атмосферы планет играют астрофизические методы спектроскопия и фотометрия в различных диапазонах, включая ультрафиолетовую и инфракрасную области, а также радиоастрономия. При этом измерения проводятся как с помощью наземных телескопов, так и приборов, установленных на борту пролетных и орбитальных автоматических межпланетных станций (см. § 115). В последнем случае имеется возможность изучать планеты гораздо более детально. Спускаемые аппараты позволяют проводить прямые исследования физико-химических свойств атмосферы и поверхности. На Луне выполнялись исследования с помощью сложных подвижных автоматов ("Луноходы") и непосредственно астронавтами, доставлявшимися на ее поверхность. В результате полетов советских и американских АМС к планетам Солнечной системы и к Луне наши знания о них в течение последних десяти лет существенно расширились. В особенности это касается Венеры и Марса, исследования которых с помощью космических аппаратов проводились многократно и имеют характер последовательно развивающейся длительной программы. Полеты космических аппаратов стали сейчас главным направлением планетных исследований. Однако наземные наблюдения планет еще долгое время будут иметь важное значение по двум причинам: 1) на космические аппараты трудно установить очень большие приборы - такие, как радиолокационные антенны и спектрографы высокой разрешающей силы; 2) космические аппараты пока не позволяют проводить достаточно длительного слежения за планетами, необходимого для изучения всякого рода изменений (сезонные изменения на Марсе, движения облаков на Юпитере и т.д.). Наземные астрономические обсерватории еще долгие годы будут наблюдать планеты и получать интересные данные о них. Но планетные исследования в целом уже не являются частью астрофизики, как это было 10-15 лет назад. Большой вклад в них вносят теперь геофизика, геохимия, геология, и на стыке этих наук с астрономией на наших глазах рождается новая область науки или даже целая ветвь связанных между собой наук, занимающихся изучением планет (физика планет, планетохимия, планетология).
§ 130. Планета Земля
Мы знаем о Земле намного больше, чем о других планетах Солнечной системы. Поэтому прежде чем перейти к ним, мы остановимся на физических характеристиках Земли. Такие вопросы, как форма Земли, ее масса, движение по орбите, вращение, уже разбирались, и мы не будем к ним возвращаться. Мы рассмотрим здесь в общих чертах внутреннее строение Земли, строение ее атмосферы, данные о физических условиях на границе атмосферы и межпланетного пространства. Литосфера и гидросфера. Рассматривая физическое строение Земли по вертикали, можно убедиться, что она представляет собой ряд концентрических сферических или почти сферических оболочек: самая внешняя оболочка - газовая атмосфера, затем идет жидкая оболочка - гидросфера, которая частично покрывает основную массу планеты - литосферу. Литосфера и атмосфера в свою очередь разделяются на ряд сферических слоев, не одинаковых по своим физическим свойствам. Рассмотрим сначала литосферу. Как изменяются ее свойства с глубиной. Казалось бы, мы не в состоянии ничего об этом узнать, находясь на ее поверхности. Ведь самые глубокие скважины до недавнего времени не превышали 6 км и только в последние годы был поставлен вопрос о бурении сверхглубоких скважин глубиной 10-20 км. Но ведь и это очень мало в сравнении с радиусом Земли. Тем не менее кое-что о строении литосферы мы знаем. Информацию об этом нам дают момент инерции Земли и землетрясения. Средняя плотность Земли равна 5,5 г/см3. Это почти вдвое больше, чем плотность поверхностных пород (около 3 г/см3). Следовательно, с глубиной плотность возрастает. Момент инерции шара, плотность которого возрастает к центру, меньше, чем у однородного шара. Чем больше концентрируется масса к центру, тем меньше момент инерции. Момент инерции Земли можно определить по скорости прецессии точек равноденствия. Он равен 0,83 от момента инерции однородного шара. Этот факт уже накладывает определенные ограничения на степень концентрации массы к центру; она не может быть ни очень большой, ни очень малой. Дальнейшее уточнение дает сейсмология - наука о землетрясениях. Установлено, что время землетрясений, так же как и во время сильных взрывов, в литосфере (от некоторой точки, называемой эпицентром) распространяются сейсмические волны, достигающие самых глубоких слоев Земли. Эти волны регистрируются сейсмографами приборами, записывающими колебания почвы. Сейсмические волны бывают двух типов: продольные и поперечные. В продольных волнах частицы сдвигаются вдоль направления распространения волны (как в звуковых волнах), в поперечных - перпендикулярно к этому направлению. Скорость продольных волн больше, чем поперечных. Когда сейсмическая волна встречает какую-либо границу раздела, происходит ее отражение и преломление. Наблюдая сейсмические колебания в различных точках земной поверхности и зная время пробега волн различных типов, можно определить глубину границ, на которых происходит изменение свойств пород, и величину самих изменений. Поперечные волны не могут распространяться в жидкой среде, так как жидкость не сопротивляется поперечному сдвигу. Поэтому наличие поперечных волн говорит о том, что литосфера является твердой вплоть до больших глубин. Однако в начале этого столетия было доказано, что, начиная с глубины 3000 км, поперечные волны распространяться не могут. Отсюда был сделан вывод: внутренняя часть литосферы образует ядро, которое находится в расплавленном состоянии. Более поздние исследования показали, что ядро делится на две зоны: внутреннее ядро (радиус около 1300 км), которое, вероятно, является твердым, и жидкое внешнее ядро (радиус около 3400 км). Твердая оболочка тоже неоднородна - в ней имеется резкая поверхность раздела на глубине около 40 км. Эта граница называется поверхностью Мохоровичича. Область выше поверхности Мохоровичича называется корой, ниже мантией. Мантия, как и кора, находится в твердом состоянии, за исключением отдельных лавовых "карманов". Плотность мантии нарастает с глубиной от 3,3 г/см3 у поверхности Мохоровичича до 5,2 г/см3 у границы ядра. На границе ядра она скачком возрастает до 9,4 г/см3. Плотность в центре Земли находится в пределах от 14,5 г/см3 до 18 г/см3. У нижней границы мантии давление достигает 1 300 000 атм. В лабораториях таких высоких давлений пока получить не удалось. Долгое время существовала уверенность, что ядро состоит из расплавленного железа, однако многие сейчас полагают, что его состав такой же, как и мантии (скорее всего, окислы кремния, магния, железа), а разница в физических свойствах вызвана высоким давлением. При спуске в шахты температура быстро повышается - примерно 20° на км. Если бы температура нарастала такими темпами в глубину, то в центре Земли она превышала бы 100 000 °К. Но известно, что мантия находится в твердом состоянии и, следовательно, ее температура нигде не может превышать точки плавления. Это дает верхний предел температуры 5000 °К у нижней границы мантии. Температура в центре Земли, по-видимому, не превышает 10 000 °К. Поскольку темп увеличения температуры с глубиной в среднем падает с приближением к центру Земли, источники тепла должны быть сосредоточены во внешних частях литосферы, скорее всего, в мантии. Единственной мыслимой причиной разогрева мантии является радиоактивный распад. В отдельных местах температура мантии превышает температуры плавления пород, и здесь образуются лавовые карманы. Предполагается, что с процессами, происходящими в области лавовых карманов, связаны вулканическая деятельность и землетрясения. Кора имеет неоднородную структуру. В области океанических впадин ее толщина значительно меньше, чем на материках. Сейчас считают, что кора вместе с гидросферой и атмосферой образовалась в результате вулканической деятельности выброса лавы, пара и газов из внутренних частей мантии. Вулканическая деятельность также привела к образованию гор. Возраст земной коры оценивается примерно в 4,5×109 лет. Эта величина была вычислена по относительному содержанию радиоактивных элементов и продуктов их распада. 71% земной поверхности занимают океаны, образующие основную часть гидросферы. Как мы увидим далее, Земля - единственная планета Солнечной системы, обладающая гидросферой. Циркуляция воды в гидросфере и ее большая теплоемкость уравнивают климатические условия на различных широтах. Гидросфера поставляет водяной пар в атмосферу. Водяной пар благодаря инфракрасному поглощению создает значительный парниковый эффект, поднимающий среднюю температуру поверхности Земли примерно на 40 °С. Физическая сущность этого эффекта такова. Солнечное излучение, максимум в распределении энергии которого находится у 0,55 мк, слабо поглощается земной атмосферой и достигает земной поверхности. Поглощенное поверхностью, оно переизлучается ею в инфракрасной области (максимум у 10 мк, соответствующий, согласно закону Вина, средней температуре Земли 290 °К). Но в инфракрасной области водяной пар поглощает часть этого излучения, и равновесная температура Земли оказывается выше, чем она была бы без "рубашки" из водяного пара. Гидросфера влияет на климат и другими путями. Она запасает большие количества тепла летом и постепенно отдает их зимой, смягчая сезонные колебания температуры на континентах. Она переносит, кроме того, тепло из экваториальных районов в умеренные и даже полярные широты. Наличие гидросферы сыграло решающую роль в возникновении жизни на Земле. Мы знаем сейчас, что жизнь зародилась в океанах, и прошли миллиарды лет, прежде чем стала обитаемой суша. Атмосфера. Атмосфера Земли вплоть до самых ее высоких слоев исследована значительно лучше, чем литосфера. Изучение верхних слоев земной атмосферы и примыкающих к ней частей межпланетного пространства особенно интенсивно производилось в течение последнего десятилетия с ракет и искусственных спутников Земли. Полученные при этом сведения помогают нам понять свойства атмосфер других планет. Химический состав атмосферы Земли на уровне моря приведен в табл. 7. Основными компонентами являются кислород (около 20%) и азот (около 80%). Современный состав атмосферы Земли, по-видимому, сильно отличается от первичного, который имел место 4,5×109 лет назад, когда сформировалась кора. Так, например, принято считать, что кислород образовался в результате жизнедеятельности растений. Первичная атмосфера содержала, по-видимому, много углекислоты и мало кислорода.
То количество кислорода, которое содержится в земной атмосфере, может быть выделено растениями за несколько тысяч лет. Содержание углекислоты в атмосфере регулируется биологическими процессами: она исчезает в результате фотосинтеза, а возвращается обратно при дыхании живых растений и животных и при разложении погибших. Период кругооборота СО2 составляет около 35 лет. Азот тоже содержится в органической материи и проходит сложный цикл изменений в биосфере. Период этого кругооборота, однако, значительно больше - около 108 лет. Таким образом, биосфера - растения, животные и микроорганизмы - существенно влияет на такую общую характеристику планеты Земли, как химический состав ее атмосферы.
На рис. 149 и 150 показана вертикальная структура земной атмосферы. Внизу расположена тропосфера. В тропосфере температура быстро (в среднем 6 град/км) падает с высотой. Причина этого состоит в том, что тропосфера нагревается инфракрасным излучением земной поверхности, которое очень сильно в ней поглощается из-за большого содержания водяного пара. Иными словами, лучистая теплопроводность тропосферы мала, и в результате перепад температуры в ней велик. Часть тепла, излучаемого поверхностью, отводится в тропосфере конвекцией, и поэтому тропосфера называется иногда конвективной зоной атмосферы. Над тропосферой находится стратосфера, в которой температура мало меняется с высотой, и в первом приближении ее можно считать постоянной. Она составляет около 220 °К. В стратосфере инфракрасное излучение, идущее снизу, поглощается слабо, ее лучистая теплопроводность велика, и поэтому мал перепад температуры. Уменьшение инфракрасного поглощения с высотой объясняется тем, что водяной пар вымерзает при уменьшении температуры. Граница между тропосферой и стратосферой называется тропопаузой. В средних широтах она расположена на высоте 11-12 км.
Разность температур между низкими и высокими широтами сглаживается благодаря явлению циркуляции атмосферы. В низких широтах атмосферные массы нагреваются и поднимаются вверх, на их место приходят более холодные с севера и с юга. Вблизи поверхности воздух движется от полюсов к экватору, а в верхней части тропосферы в обратном направлении. Кориолисова сила смещает линии тока, создавая составляющие, направленные по параллелям, и в результате образуются своеобразные циркуляционные петли с горизонтальными масштабами порядка нескольких тысяч километров. На Земле картина общей циркуляции сильно усложняется присутствием океанов, теплоемкость которых очень велика. Поднятие воздушных масс над относительно теплыми водными пространствами приводит к тому, что возникают местные движения, направленные по радиусам к некоторому центру. Под влиянием кориолисовой силы движения становятся спиральными. Образуется большая местная циркуляционная ячейка, называемая циклоном. В относительно холодных областях направления движений обратные, и в этом случае может сформироваться антициклон. Динамические процессы такого рода в общем определяют все явления смены погоды, и их исследование очень важно для ее прогноза. На высоте 20-25 км начинается увеличение температуры. Причиной этого увеличения является экзотермическая (т.е. сопровождающаяся выделением тепла) фотохимическая реакция разложения озона
О3 + hn ® O2 + О.(10.1)
Озон появляется в результате фотохимического разложения O2
O2 + hn ® O + O(10.2)
и последующей реакции тройного соударения
O + O2 + М ® O3 + М,(10.3)
где М - третья молекула. В результате реакции (10.1) озон поглощает ультрафиолетовое излучение в области от 2000 до 3000 Å, и это излучение разогревает атмосферу. Температура растет примерно до 50 км, где достигает максимума (около 270 °К). Эта сравнительно теплая область атмосферы называется мезосферой (или озоносферой). Озон, находящийся в верхней атмосфере, служит своеобразным щитом, охраняющим нас от действия ультрафиолетового излучения Солнца. Без этого щита развитие жизни на суше в ее современных формах вряд ли было бы возможно. Над мезосферой расположен температурный минимум - мезопауза. Выше температура вновь начинает расти. Причиной является поглощение ультрафиолетового излучения Солнца на высотах 150-300 км, обусловленное ионизацией атомарного кислорода O + hn ® O+ + e-. Над мезопаузой температура растет непрерывно до высоты около 400 км, где она достигает днем в эпоху максимума солнечной активности 1800 °К. В эпоху минимума солнечной активности эта предельная температура может быть меньше 1000 °К. Выше 400 км атмосфера изотермична. Область изотермии называется термосферой. В § 120 мы познакомились с понятием шкалы высот (формула 9.5) Это соотношение можно записать также в виде
(10.4)
где k - постоянная Больцмана (1.38×10-16 эрг/град) и mH = 1,67×10-24 г - масса атома водорода. Чем больше температура и легче молекулы, тем медленнее уменьшаются с высотой давление р и концентрация молекул n, т.е. число молекул в 1 см3 (они связаны простым соотношением р = nk T ). Возникает вопрос, какой молекулярный вес надо подставить в формулу (10.4) средний или индивидуальный для каждого газа (каждого компонента), находящегося в атмосфере? Если средний, то химический состав не будет изменяться с высотой; если индивидуальный для каждой составляющей, то относительное содержание легких компонентов будет увеличиваться с высотой. Легко понять, что средний вес надо брать в том случае, если газы перемешаны между собой механически. К перемешиванию приводят процессы конвекции, восходящие и нисходящие потоки газа. В обратном направлении действует процесс диффузии, который стремится установить для каждого газа свою шкалу высот. Скорость диффузии обратно пропорциональна давлению. На уровне моря она ничтожна и становится сравнимой со скоростью перемешивания только на высотах 100-120 км. Часть атмосферы, расположенная ниже 100-120 км, называется областью полного перемешивания; часть, расположенная выше, - областью диффузионного разделения. Относительный химический состав атмосферы в области полного перемешивания не меняется с высотой. В этом случае в формулу (10.4) надо подставлять средний молекулярный вес . На уровне моря средний молекулярный вес атмосферы равен 29. Средняя температура на уровне моря Т = 290 °К и ускорение силы тяжести g = 980 см/сек2. Подставляя эти величины в формулу (10.4), получим
На высоте 8 км, следовательно, давление примерно в 3 раза меньше, чем на уровне моря. Если мы поднимемся на высоту 100 км, то там давление и концентрация молекул будут примерно в миллион раз меньше, чем на уровне моря. Выше 100-120 км в области диффузионного разделения большая часть кислорода находится в атомарном состоянии, в то время как азот остается в молекулярном виде. Поэтому относительное содержание азота уменьшается с высотой. В результате на высотах 400-500 км, где концентрация в 1011-1012 раз меньше, чем на уровне моря, атмосфера состоит главным образом из кислорода. Но шкала высот для гелия в 8, а для водорода в 16 раз больше, чем для кислорода. В результате выше 700 км основными составляющими являются уже гелий и водород. На высоте 1000 км концентрация молекул составляет в среднем 3×105 см -3, т. е. в 1014 раз меньше, чем на уровне моря. Самые внешние части атмосферы, состоящие из водорода, простираются на расстояние до нескольких земных радиусов, образуя водородную геокорону. Концентрация водородных атомов в геокороне 102-103 см -3. Необходимо сказать несколько слов о методах исследования атмосферы на больших высотах. Вплоть до высот около 300 км давление с достаточной точностью определяется манометрами, установленными на ракетах. На больших высотах такие манометры использовать трудно, так как приборы и корпус ракеты выделяют больше газа, чем содержится в окружающей атмосфере. Начиная с высоты 200 км плотность атмосферы очень точно определяется по торможению искусственных спутников Земли. Этим способом плотность вычислена до высоты 1800 км. Установлено, что выше 300 км плотность атмосферы днем в несколько раз больше, чем ночью. Это объясняется тем, что днем выше температура термосферы и больше шкала высот Н. Масс-спектрометры, установленные на ракетах и спутниках, позволяют определить относительный химический состав атмосферы на больших высотах. Зная зависимость плотности от высоты, можно определить шкалу высот, а зная ее и химический состав атмосферы, найти по формуле (10.4) температуру. На высоте 500 км плотность атмосферы такова, что длина свободного пробега молекул и атомов становится приблизительно равной шкале высот Н " 100 км. Наиболее вероятная скорость атомов (см. § 104) равна Часть атомов той же массы т имеет скорость большую v*, часть - меньшую. Какая-то доля молекул улетает с критического уровня со скоростями, превышающими параболическую (11 км/сек), и покидает Землю навсегда. Это явление называется диссипацией атмосферных газов. Чем больше температура, легче молекула и чем меньше параболическая скорость, тем быстрее идет диссипация. Оценки скорости диссипации показывают, что количество кислорода в атмосфере Земли уменьшится в 3 раза через 1026 лет, а количество водорода всего лишь через 103 лет. При этом предполагается, что потери вследствие диссипации не возмещаются поступлением в атмосферу новых количеств газа. Приведенные числа показывают, что Земля теряет кислород достаточно медленно и его утечкой можно пренебречь. Водород и гелий улетучиваются, наоборот, очень быстро, и если мы находим их в атмосфере, то это означает, что их потеря непрерывно возмещается. Возмещение водорода происходит за счет диссоциации водяного пара ультрафиолетовым излучением Солнца, а гелий выделяется земной корой благодаря процессам радиоактивного распада. Ионизация О, O2 , N2 ультрафиолетовым излучением Солнца. приводит к образованию ионов и электронов в верхней атмосфере. Таким образом, термосфера представляет собой ионизованный газ - плазму, и часто ее называют ионосферой, подчеркивая тот факт, что она содержит заряженные частицы. Плотность положительных и отрицательных зарядов в каждой точке ионосферы, как и любой плазмы, одинакова. Если вследствие случайных флуктуаций возникает даже небольшой избыток зарядов одного знака, этот избыток притягивает заряды другого знака и равновесие восстанавливается. Это свойство называется квазинейтральностью плазмы. Приставка квази означает, что плазма все же ведет себя иным образом, чем газ, состоящий из нейтральных частиц. Подвижность электронов много больше, чем подвижность ионов, и они быстрее реагируют на изменение электрического и магнитного поля. Плазма преломляет, отражает и поглощает электромагнитные колебания. Концентрация электрических зарядов (электронная концентрация равна ионной) в земной атмосфере на высоте. 300 км составляет днем около 106 см -3. Плазма такой плотности отражает радиоволны длиной 20 м, а более короткие пропускает. Критическая частота (граница пропускания) зависит от электронной концентрации и равна Так как интенсивность ультрафиолетового излучения Солнца изменяется, то изменяется и n 0 . Казалось бы, ночью электронная плотность должна быть равна нулю и ионосфера должна исчезать, поскольку источник ионизации отсутствует. Действительно, нижняя часть ионосферы (слой D, на высоте около 70 км) ночью исчезает и вновь формируется утром. Однако наиболее плотная и протяженная часть ионосферы (слой F, на высоте 200-500 км) сохраняется ночью. Причина этого состоит в том, что процесс рекомбинации (соединения) ионов и электронов идет быстрее в более глубоких слоях атмосферы и медленнее в более высоких и разреженных. На рис. 151 показана зависимость электронной концентрации пе в ионосфере от высоты. Эта кривая не является гладкой, на ней имеются отдельные скачки. Уровни, на которых находятся скачки, отражают радиоволны с частотой больше n 0 . Таким образом, посылая в ионосферу радиоволны различной частоты и регистрируя их отражение, можно определить зависимость nе от высоты. На этом принципе основана работа ионосферных станций. Приборы, установленные на искусственных спутниках Земли, измеряют плотность электрических зарядов в ионосфере непосредственно.