Вопросами возникновения органической жизни занимается эволюционная химия , которая видит ответ в самоорганизации химических элементов, которые из набора органогенов С, Н, О, N, Р, S и 12 химических элементов Na, K, Ca, Mg, Mn, Fe, Si, Al, Cl, Cu, Zn, Co в определенных условиях создали органические соединения – аминокислоты и белки. В 1964 г. Руденко создал теорию саморазвития открытых каталитических систем, известную как общая теория хемо– и биогенеза. Он считал, что эволюции способствовали вещества-катализаторы, ускоряющие изменения химических систем: на первом этапе изменялись неорганические химические вещества, потом возникли органические вещества и затем – органическая жизнь. Когда период интенсивных и разнообразных химических превращений сменился периодом биологической эволюции, химическая эволюция застыла и затормозилась. Поворотным моментом в истории развития жизни является кембрийская эра, когда на смену одноклеточным пришли многоклеточные живые существа. Появление многоклеточных называется иначе «кембрийским взрывом» , поскольку за 3–5 млн лет появились все известные типы живых организмов.
71. Теория панспермии
Гипотез, объясняющих появление жизни на Земле, существует немало. До XX в. наиболее распространенными были креационизм (божественное сотворение живого мира согласно Библии), концепция многократного спонтанного зарождения жизни из неживого вещества (Аристотель считал, что живое может возникать при разложении почвы); концепция стационарного состояния (по ней жизнь существует изначально и вечно); концепция происхождения жизни в результате определенных физических и химических процессов; теория панспермии .
Теория панспермии предполагает, что жизнь была занесена из космоса либо в виде спор микроорганизмов, либо путем вмешательства разумных пришельцев из других миров. Возможность переноса спорами достаточно реальна (метеориты), но доказательств этому нет. Намеренный перенос жизни историческими свидетельствами не подкреплен. По Либиху, можно рассматривать как постоянные хранилища органических зародышей атмосферы небесных тел и вращающихся космических туманностей, откуда жизнь переносится по всей Вселенной.
Доктор Рихтер в 1865 г. предложил гипотезу космозоев (космических зачатков) : существуют вечные зачатки жизни, которые переносятся с планеты на планету (теорию поддержали видные ученые того времени – Кельвин, Гельмгольц и др.). В начале XX в. Аррениус предложил теорию радиопанспермии (споры с населенных планет увлекаются в космос и странствуют за счет светового давления, пока не окажутся на подходящей планете, где просыпаются и порождают жизнь). В качестве «доказательств» предлагаются археологические артефакты (от наскальных рисунков до моделей самолетов из египетских гробниц) или изыскания уфологов. Наиболее уязвимым местом теории является вопрос: если жизнь откуда-то перенесена, как она там возникла, что сразу возвращает ученых к исходной точке.
Наиболее разумна теория биологической эволюции , предполагающая возникновение жизни в результате физических и химических процессов в условиях молодой Земли, которые непригодны для развитой уже жизни: высокая температура (4000 °C), атмосфера, состоящая из водяных паров, СО2, СН3, NH3, присутствие сернистых соединений (вулканическая активность), высокая электрическая активность атмосферы, ультрафиолетовое излучение Солнца, беспрепятственно достигавшее поверхности Земли при несформированном озоновом слое.
72. Гипотеза Опарина – Холдейна
Гипотеза Опарина появилась в 1923 г. и сразу привлекла внимание. Ученый картину зарождения жизни видел так: первые сложные углеводороды могли возникать в океане из более простых соединений, постепенно накапливаться и приводить к возникновению «первичного бульона». В «бульон» входили аминокислоты и белки, возникшие в силу случайных обстоятельств (электрические разряды, высокая температура и т. п.). Белки создавали гидрофильные комплексы, которые обособлялись от водной фазы и образовывали коацерваты (сгустки) с липидной оболочкой, преобразующиеся в примитивные клетки.
В 1929 г. английский ученый Холдейн опубликовал свою гипотезу возникновения жизни (без гидрофильных комплексов и коацерватов). По Холдейну, жизнь возникла из неоргани ческих веществ путем длительной абиогенной (небиологической) молекулярной эволюции в результате закономерного процесса перехода химической формы движения материи в биологическую и путем образования простых органических соединений.
Оба ученых обосновывают теорию следующим: в раннем возрасте Земля представляла собой раскаленную планету, которая «перемешивала» химические элементы в процессе вращения (тяжелые опускались к центру, легкие всплывали к поверхности); так водород, углерод, азот сконцентрировались наверху. При охлаждении образовались также метан, углекислый газ, аммиак, цианистый водород, кислород и др. Большое значение имело образование воды и формирование того типа атмосферы, в которой возможны окислительно-восстановительные процессы. Вулканическая деятельность способствовала высвобождению массы углерода. Попадая в первобытный океан, углерод образовывал углеродные соединения, которые в результате дальнейшего синтеза под влиянием солнечной энергии образовали среду, где смогла зародиться жизнь.
Гипотеза Опарина – Холдейна содержит рациональное зерно, но устарела: она не учитывает молекулярную биологию, механизм передачи генов, роль РНК и ДНК. Однако идея подвигла других ученых смоделировать условия древней Земли в лаборатории. Миллеру удалось получить 15 аминокислот и простые сахара, Орджелу – простые нуклеиновые кислоты, на сегодняшний день синтезированы все 20 аминокислот.
73. Предмет, задачи и методы биологии
Биологией называется совокупность наук о живых системах.
Предметом изучения биологии является биологическая жизнь, включая строение и функции живых существ и их природных сообществ; распространение, происхождение и развитие новых существ и их сообществ; связи живых существ и их сообществ друг с другом и с неживой природой.
К задачам биологии можно отнести изучение существующих биологических закономерностей в живой природе.
Биология оперирует методами , свойственными для всех естественных наук, – это: наблюдение (позволяет описать биологическое явление); сравнение (дает возможность найти закономерности, общие для разных явлений); эксперимент (позволяет исследователям искусственно воссоздать ситуацию и выявить свойства биологических объектов); исторический метод (раскрывает законы развития живой природы на основе данных о современном мире живого и о его прошлом).
Биологические науки можно систематизировать по:
1) предмету изучения: ботаника, зоология, микробиология и т. д.; 2) общим свойствам живых организмов:
генетика (закономерности наследственности), биохимия (превращения вещества и энергии), экология (взаимоотношения живых существ с окружающей средой) и т. п.;
3) уровню организации живой материи (молекулярная биология, цитология, гистология и т. п.);
4) общему направлению:
– традиционная, или натуралистическая биология, объектом которой является изучение живой природы в естественном состоянии и нерасчлененной целостности; главный метод – наблюдение без попыток вмешаться в естественный ход вещей; исследует взаимоотношения организмов между собой (биотические факторы) и со средой обитания (абиотические факторы); главная черта – экологичность;
– функционально-химическая биология, основанная на молекулярной биологии, смыкающаяся с точными физико-химическими науками, использующая множество экспериментальных методов для исследования живой материи на субмикроскопическом, надмолекулярном и молекулярном уровнях;
– эволюционная биология, изучающая закономерности исторического развития организмов и базирующаяся на теории эволюции Ч. Дарвина;
– теоретическая биология, в которую входят общетеоретические исследования фундаментальных и общих принципов, законов и свойств, лежащих в основе живой материи.
74. Аксиомы биологии Медникова
В отличие от вопроса о происхождении жизни, вопрос о сущности жизни лежит в плоскости разделения живой и неживой материи. Поисками границы между живым и неживым занимались еще в древности, но в XX в. физики всерьез заговорили о воле и разуме элементарной частицы, а создание искусственного интеллекта вплотную подвело к вопросу, является ли разум непременным свойством живой разумной материи. Поэтому перед биологией встала задача – найти признаки, способные отделить живое от неживого. Разные ученые выдвигали разные критерии для проведения такой границы. В качестве основной характеристики жизни Э. С. Бауэр (1935 г.) предлагал принцип устойчивой неравновесности живых систем, а Л. Берталанфи (1932 г.) рассматривал биологические объекты как открытые системы, находящиеся в состоянии динамического равновесия.
– теоретическая биология, в которую входят общетеоретические исследования фундаментальных и общих принципов, законов и свойств, лежащих в основе живой материи.
74. Аксиомы биологии Медникова
В отличие от вопроса о происхождении жизни, вопрос о сущности жизни лежит в плоскости разделения живой и неживой материи. Поисками границы между живым и неживым занимались еще в древности, но в XX в. физики всерьез заговорили о воле и разуме элементарной частицы, а создание искусственного интеллекта вплотную подвело к вопросу, является ли разум непременным свойством живой разумной материи. Поэтому перед биологией встала задача – найти признаки, способные отделить живое от неживого. Разные ученые выдвигали разные критерии для проведения такой границы. В качестве основной характеристики жизни Э. С. Бауэр (1935 г.) предлагал принцип устойчивой неравновесности живых систем, а Л. Берталанфи (1932 г.) рассматривал биологические объекты как открытые системы, находящиеся в состоянии динамического равновесия.
Аксиомы биологии, выведенные Б. М. Медниковым, позволяют разделить существующую природу на живую и не живую, то есть провести границу между жизнью и тем, что не является жизнью. К ним относятся следующие:
1. Все живые организмы должны состоять из фенотипа и программы для его построения (генотипа), передающейся по наследству из поколения в поколение. Наследуется не структура, а описание структуры и инструкция по ее изготовлению. Жизнь на основе только одного генотипа или одного фенотипа невозможна, так как при этом нельзя обеспечить ни самовоспроизведения структуры, ни ее самоподдержания.
1. Генетические программы не возникают заново, а реплицируются матричным способом. В качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения. Жизнь – это матричное копирование с последующей самосборкой копий.
2. В процессе передачи из поколения в поколение генетические программы в результате многих причин изменяются случайно и ненаправленно, и лишь случайно эти изменения оказываются приспособительными. Отбор случайных изменений не только основа эволюции жизни, но и причина ее становления, потому что без мутаций отбор не действует.
3. В процессе формирования фенотипа случайные изменения генетических программ многократно усиливаются, что делает возможным их селекцию со стороны факторов внешней среды. Из-за усиления в фенотипах случайных изменений эволюция живой природы принципиально непредсказуема.
75. Живые организмы как целостные системы
Биологической (живой) системой называется совокупность взаимодействующих элементов, образующих целостный объект с новыми качествами, не свойственными входящим в систему элементам.
Свойствами целостной (живой) системы являются: множественность элементов, наличие связей между ними и окружающей средой, согласованная организация их взаимоотношений как в пространстве, так и во времени для осуществления функций системы.
Жизнью в биологии называется высшая из природных форм движения материи, которая характеризуется самообновлением, саморегуляцией и самовоспроизведением разноуровневых открытых систем, вещественную основу которых составляют белки, нуклеиновые кислоты и фосфорорганические соединения.
К признакам живого организма относятся: сложная упорядоченная структура, получение энергии из внешней среды и использование ее на поддержание этой упорядоченности, способность изменяться и усложняться, активно реагировать на внешнюю среду, самовоспроизводиться на основе генетического кода.
Живая целостная система образуется в результате соединения составных элементов в порядке, сложившемся в процессе эволюции, и обладает следующими качествами :
– единство химического состава (углеродная жизнь с преобладанием 6 элементов – О, С, Н, Са, F, N и сложных полимеров);
– открытость системы (то есть использование внешних источников энергии для осуществления в организме метаболизма, основанного на процессах анаболизма и катаболизма – синтеза и распада веществ – для биосинтеза);
– способность к самоуправлению, саморегуляции, самоорганизации, самовоспроизведению;
– изменчивость (приобретение в ходе жизни новых качеств, полезных для приспособления к среде);
– способность к росту и развитию (на индивидуальном и видовом уровне – онтогенезу и филогенезу);
– раздражимость (реакция на внешние раздражители);
– целостность и дискретность одновременно (дискретность, поскольку система состоит из отдельных живых систем – клеток; целостность, поскольку живые системы взаимосвязаны).
Все признаки существуют только в совокупности, и ни один из них не является основным.
76. Уровни организации живых систем
В биологии рассматриваются три уровня существования живых систем: биологическая микросистема (молекулярный и клеточный уровни); биологическая мезосистема (тканевый, органный, организменный уровни); биологическая макросистема (популяционно-видовой, биоценотический, биосферный уровни).
Биологическая микросистема. Молекулярный уровень отличается тем, что состоит из отдельных признаков жизни, представляющих собой однотипные дискретные единицы, присущие всем живым организмам, – 20 аминокислот и 4 одинаковых основания, входящие в состав молекул нуклеиновых кислот. Биологическая энергия содержится в молекулах аденозинтрифосфорной кислоты (АТФ), наследственная информация – в молекулах дизоксирибонуклеиновой кислоты (ДНК), в реализации генетической информации участвуют молекулы рибонуклеиновой кислоты (РНК).
Клеточный уровень представлен клеткой – самостоятельно функционирующей элементарной биологической единицей, присущей всем живым организмам, на уровне клетки происходят биосинтез и реализация наследственной информации; у одноклеточных организмов клеточный уровень совпадает с организменным.
Биологическая мезосистема. Тканевый уровень образует совокупность клеток с одинаковым типом организации, здесь наблюдается сходство между всеми живыми существами, это уровень всех многоклеточных организмов, отличающий их от одноклеточных. Органный уровень представлен совместно функционирующими клетками, относящимися к разным тканям, шесть основных тканей входят в состав органов всех животных и шесть основных тканей образуют органы у растений. Организменный уровень имеет огромное разнообразие форм, представляет многообразие организмов, относящихся к разным видам или в пределах одного вида, что объясняется усложнением комбинаций единиц низшего порядка.
Биологическая макросистема. Популяционный уровень представляет собой совокупность организмов одного вида, населяющих определенную территорию, то есть популяцию, которая является элементарной единицей эволюционного процесса. Биоценотический уровень включает исторически сложившиеся устойчивые сообщества популяций различных видов, связанных между собой и окружающей средой обменом веществ, энергии и информации. Биосферный уровень включает всю совокупность биогеоценозов и обуславливает все процессы, протекающие в биосфере.
77. Термодинамические процессы в живых системах
В классической термодинамике рассматриваются изолированные (замкнутые) или равновесные системы. Для замкнутых систем характерны простейшие расчетные уравнения, основанные на ряде характеристик: объем (V), работа (A), давление (P), температура (T), теплота (Q), внутренняя энергия тела (U). Для этих систем Т является производной от энергии, а запас энергии всегда имеет положительную величину, поскольку даже при Т = 0 К существует колебательное и вращательное движение молекул (то есть их тепловое движение).
Теплота является одной из форм энергии, которую получает или передает система, работа выражается равенствами А = F · S, A = P · V и определяется силой действия на систему, а внутренняя энергия тела состоит из суммы энергии атомов, молекул, электронов:
U = Uпоступ движ молек+ Uядер+ Ue + …
Ек и Еп данной системы в целом не учитывается. Классическая термодинамика сводится к двум началам термодинамики :
1) закону сохранения и превращения энергии (Q = U + A, где U – изменение внутренней энергии);
2) закону максимального роста энтропии при необратимых процессах до достижения системой равновесия
Живые системы не являются замкнутыми. Открытость системы – главное условие для ее существования, то есть если бы законы классической термодинамики выполнялись в открытых живых системах, они были бы обречены на смерть. Но этого не происходит, хотя законы термодинамики работают. Для живых систем в расчеты включается также и среда, с которой обменивается энергией живое существо, таким образом, термодинамические процессы существуют для единого комплекса: живая открытая система + внешняя среда = замкнутая система.