Концепции современного естествознания. Шпаргалки - Ирина Богданова 7 стр.


В основе электромагнитной картины мира лежит рассмотрение двух видов взаимодействий близкого порядка – гравитационного и электромагнитного, которые относятся к полевому взаимодействию. Эйнштейн пытался свести эти взаимодействия к единому, объединив гравитационное и электромагнитные поля, и создать единую теорию поля, но не успел. Единой теории поля не существует и сегодня.

Основополагающими являются принципы: относительности Эйнштейна, близкодействия, постоянства и предельной скорости света, эквивалентности инертной и гравитационной масс, причинности, взаимосвязи массы и энергии.

Но электромагнитная картина мира не могла объяснить некоторых явлений (соотношения между полем и зарядом, устойчивость атомов, их спектры, явление фотоэффекта, излучение абсолютно черного тела и т. п.), и на смену ей пришла квантово-полевая картина мира .

48. Формирование квантовой физики

В основе квантовой физики лежат идеи о квантовании физических величин и корпускулярно-волновом дуализме. Квантованными называются физические величины, которые могут принимать лишь определенные дискретные значения, а выражение таких величин через квантовые числа называется квантованием . Идея квантования относится к концу XIX – началу XX вв. и связана с рядом открытий в физике и получением ряда экспериментальных данных. Большое значение для появления и развития квантовой физики имело открытие электрона, который обладал сверхмалым отрицательным зарядом. Для выражения заряда электрона пришлось применить способ, названный квантованием. Математическое выражение силы заряда через квантование для электрона выглядит как q = ±n · e.

Толчком для развития квантовых представлений о мире явились и противоречия в существующей электромагнитной теории, которые привели к испугавшим научный мир расчетам и разговорам об ультрафиолетовой катастрофе. Суть сводилась к тому, что рассчитанная энергия теплового излучения на всех частотах равнялась бесконечности, а такого не могло быть, исходя из закона сохранения энергии, и говорило неверной теории либо близкой космической катастрофе.

Планк предложил новую теорию, предполагавшую, что электромагнитное излучение испускается отдельными порциями (квантами), величина которых пропорциональна частоте излучения, поэтому энергия может принимать лишь дискретные значения, равные целому числу квантов энергии. В рамках этой теории закон сохранения энергии соблюдался, а сама гипотеза Планка легла в основу квантовой физики.

Экспериментально квантовую теорию подтверждало явление фотоэффекта (выбивание электронов из вещества под действием света), для которого были выявлены следующие закономерности: независимость энергии выбиваемых электронов от интенсивности света и зависимость от частоты световой волны; наличие для каждого вещества минимальной частоты, при которой фотоэффект возможен («красной» границы фотоэффекта). Объяснить их электромагнитной теорией было невозможно. Эйнштейн предположил, что свет представляет собой поток световых частиц – квантов, которые позже были названы фотонами. Таким образом, в основе света лежит как волновая, так и корпускулярная природа.

49. Корпускулярно-волновая теория

Свет был таким природным явлением, которое на протяжении всего развития науки труднее всего поддавалось объяснению. Ньютон объяснял свет существованием множества корпускул, Гук и Гюйгенс – как механическую волну, Максвелл – как электромагнитную волну. Открытие фотоэффекта заставило снова вернуться к корпускулярной теории. И наконец, сформировалась корпускулярно-волновая теория света, признавшая наличие и тех и других качеств.

Эксперименты доказали, что свет имеет дуальную природу, и распределение волновых или корпускулярных свойств зависит от длины волны: чем она меньше, тем сильнее проявляются корпускулярные свойства света: E = h · ν. Физик де Бройль в 1924 г. высказал идею, что аналогичными дуальными свойствами обладает не только свет, но и другие элементарные частицы: в одних условиях они ведут себя как корпускулы, в других – как волны. Если частица ведет себя как волна, она не проявляет корпускулярных свойств, если она ведет себя как корпускула, она не проявляет волновых качеств, то есть в конкретный момент она является либо корпускулой, либо волной, и никогда вместе.

В 1927 г. Нильс Бор сформулировал принцип дополнительности, который гласит, что, как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий, то есть квантово-механические явления должны описываться при помощи двух взаимоисключающих (дополнительных) наборов классических понятий, и только их совокупность может дать полную информацию о рассматриваемых явлениях как о целостных.

Такие явления не ограничиваются квантовой физикой. Принцип дополнительности применяется в биологии, психологии, социальных науках и т. п., то есть тогда, когда рассматриваемое явление или система достаточно сложно и противоречиво, вследствие чего не может быть описано с точки зрения одного выделенного основополагающего качества.

По современным понятиям, квант не является в полном смысле ни корпускулой, ни волной, он соединяет свойства частиц и свойства волн, образуя некий третий объект, который в силу узости нашего сознания не может быть воспринят и описан в едином понятии.

50. Принцип неопределенностей Гейзенберга

Принципы классической физики оказались неприменимы для мира сверхмалых частиц. В классической механике движение частиц описывается по существующим правилам: у частицы существуют конкретная траектория движения, конкретные координаты в пространстве, неизменная масса и энергия. Поведение частицы в микромире этим правилам не подчиняется. Микрочастица в силу волновых свойств не имеет ни траектории, ни координат, ни импульса, которые можно точно рассчитать: чем точнее определяется координата, тем менее точно можно определить импульс. О поведении микрочастицы можно говорить только приблизительно. Гейзенберг вывел неравенства, описывающие соотношения этих неопределенностей.

где x – это неопределенность, или неточность, нахождения координаты импульса; px – неопределенность, или неточность, нахождения самого импульса. В случае если это произведение сравнимо с постоянной Планка, то поведение частицы описывается квантовой механикой. В случае если это произведение много больше постоянной Планка, то поведение частицы описывается классической механикой. В то же время ни для какого движения в природе это произведение не может быть меньше постоянной Планка: h

Принцип неопределенности не связан с несовершенством используемых для наблюдения приборов, он связан с самими особенностями поведения частиц в микромире. Неопределенности порождаются законами микромира, а не проблемами у внешнего наблюдателя. Причем принцип неопределенностей распространяется только на частицы микромира, но не на малые материальные объекты макромира.

Существует закономерность: чем крупнее изучаемая частица, чем ближе она подходит к порогу макромира или его переходит, тем вернее можно сказать, что для нее работают законы классической физики, а не законы микромира. Для макроскопических тел можно применять одновременно понятия координат и скорости.

Постоянную Планка для таких объектов в расчетах не учитывают. Принцип неопределенностей показывает, что классическая механика является частным случаем квантовой и релятивистской механики.

51. Понятия и принципы квантовой картины мира

Квантово-полевая картина мира ввела в обращение корпускулярно-волновые представления о материи и новую методологию познания и понимания физической реальности. Огромное значение в квантовой физике придается не только частицам, за которыми ведется наблюдение в ходе эксперимента, но и самому наблюдателю, организации процесса эксперимента. До XX в. никакого значения этому не придавалось, наблюдатель находился вне эксперимента, он лишь регистрировал изменения, происходящие с объектами эксперимента. В квантовой механике наблюдатель играет такую же роль, что и частицы, за которыми он наблюдает.

Квантовая картина мира рассматривает материальный мир, но объекты рассмотрения представляют собой не тела макромира, а элементарные частицы микромира, где они проявляют как корпускулярные, так и волновые свойства.

Пространство-время в квантовой картине мира является единым понятием и определяет особенности поведения сверхмалых частиц. В четырехмерном пространстве-времени для частиц невозможно определить точных координат, а также точно измерить их импульс, поэтому к микромиру применяются законы вероятности, более того, частицы могут одновременно существовать и не существовать. Пространственно-временной интервал в квантовой физике инвариантен при переходе из одной инерциальной системы в другую.

Квантовая картина мира рассматривает материальный мир, но объекты рассмотрения представляют собой не тела макромира, а элементарные частицы микромира, где они проявляют как корпускулярные, так и волновые свойства.

Пространство-время в квантовой картине мира является единым понятием и определяет особенности поведения сверхмалых частиц. В четырехмерном пространстве-времени для частиц невозможно определить точных координат, а также точно измерить их импульс, поэтому к микромиру применяются законы вероятности, более того, частицы могут одновременно существовать и не существовать. Пространственно-временной интервал в квантовой физике инвариантен при переходе из одной инерциальной системы в другую.

В квантовой картине мира пространственно-временные и энергетически импульсные понятия не могут использоваться независимо друг от друга, они дополняют друг друга, то есть пространство, время и причинность существуют комплексно, но параметры существования каждой частицы не могут быть точно определены, для частиц в квантовом мире существуют статистические законы, которые рассматривают поведение частицы как поведение совокупности частиц.

Движение частиц описывается волновыми функциями, которые базируются на уравнении Шредингера , позволяющем применить законы вероятности к максимально возможному числу траекторий частицы. Для определения вероятности каждого случая проводится дополнительная операция (редукция, коллапс) волнового пакета, связанная с проведением измерений.

Квантовая картина мира включает четыре типа взаимосвязи на уровне частиц: сильное (ядерное), слабое (распад частиц), электромагнитное, гравитационное.

52. Структурные уровни материи

Структурно материальный мир разделяется на три уровня – микромир, макромир, мегамир.

Микромир составляют мельчайшие объекты – элементарные частицы, атомы, молекулы. Основные наблюдения ведутся над элементарными частицами, среди которых появляются новые и новые. Первым был открыт отрицательно заряженный электрон, затем – положительно заряженный позитрон, нейтральный к взаимодействиям нейтрон и т. п. Некоторые частицы были теоретически предсказаны и только потом открыты. В микромире в силу его корпускулярно-волнового характера действуют законы квантовой физики.

Макромир является привычным для человека окружающим миром. В нем заключены объекты, равновеликие человеку. Мельчайшие объекты макромира – гиганты микромира, это крупные молекулы и соединения молекул, вещества (во всех агрегатных состояниях), живые существа (начиная с живой клетки и завершая венцом творения – человеком), а также природные формирования и продукты жизнедеятельности человека. С развитием космонавтики макромир не ограничивается Землей, но включает материальный мир планет, хотя сами планеты относятся к другому уровню организации материи. В макромире действуют законы классической механики, которая является частным случаем квантовой механики. Макромир изучается помимо физики всей совокупностью естественных наук (биология, геология, география и т. п.).

Мегамир составляют объекты, многократно превосходящие человека по величине. Для мегамира макромир находится на том же уровне, что микромир для макромира. Объекты мегамира включают в себя планеты, звезды, галактики и их скопления, расположенные в безвоздушном космическом пространстве. В силу искривленности пространства законы макромира в мегамире не работают. Мегамир подчиняется теории относительности и постулатам релятивистской механики.

Границ, точно определяющих принадлежность объектов к одному из трех уровней, не существует. Обычно для этого оперируют средним размером и массой. Большого значения деление на мега-, макро и микромир тоже не имеет, но это удобно с точки зрения понимания, какие из существующих физических законов можно применить.

53. Типы элементарных частиц

Элементарными частицами называются мельчайшие частицы: 1) входящие в состав атома; 2) получаемые его дроблением с помощью ускорителей частиц; 3) образованные в результате прохождения через атмосферу космических лучей и существующие миллионные доли секунды, порождая при распаде другие частицы или энергию.

Самыми известными элементарными частицами являются: электрон, фотон, пи-мезон, мюон, нейтрино. Существует ряд частиц, способных превращаться в другие частицы. Одними из наиболее элементарных являются предсказанные и затем зарегистрированные экспериментально кварки.

К элементарным частицам относятся входящие в состав атома протон и нейтрон. Для частиц, имеющих более сложную структуру, введено понятие фундаментальных частиц.

Элементарные частицы классифицируют по свойствам и характеру взаимодействия на фермионы и бозоны. Друг от друга они отличаются выполняемыми функциями: фермионы составляют вещество, бозоны переносят взаимодействие.

Фермионы делятся на адроны (сильные) и лептоны (легкие). В состав адронов входят кварки. Лептоны могут: 1) иметь отрицательный электрический заряд (тогда они вращаются вокруг ядра атома); 2) быть нейтральными (тогда они обладают способностью проходить сквозь вещество без взаимодействия с ним).

Каждая частица имеет противоположную по заряду античастицу. Античастицы были предсказаны Полом Дюраком.

Бозоны включают в себя глюоны, фотоны, вионы, гравитоны, которые образуют четыре типа взаимодействия. Фотон (квант) переносит электромагнитное взаимодействие, глюон – сильные ядерные взаимодействия, вион (векторный бозон) – слабые взаимодействия, возникающие при распаде частиц, гравитон должен переносить гравитационное взаимодействие, но пока он существует чисто теоретически. На сегодняшний день известно 12 фундаментальных частиц и античастиц, то есть 6 лептонов (электрон, мюон, Тау-лептон, ν e, ν µ, ντ) и 6 кварков.

Во всех видах взаимодействий элементарные частицы представляют собой единое целое. Их характеристиками являются такие: масса покоя, электрический заряд, спин, квантовые характеристики – барионный заряд, лептонный заряд, гиперзаряд, странность и т. д.

54. Строение атомного ядра

Ядром атома называют его центральную часть, в которой сосредоточена практически вся масса атома и весь его положительный заряд. В состав ядра входят протоны и нейтроны, которые обобщенно называют нуклонами. Протоны положительно заряжены, нейтроны – нейтральны. Но масса ядра не соответствует сложению масс нуклонов. Расчет числа протонов исходит из числа электронов (оно равно числу электронов), количество нейтронов определяется по формуле NP = A – Z, где А – массовое число, то есть целое число, ближайшее к атомной массе элемента в таблице Менделеева, Z – зарядовое число (число протонов).

Ядра атомов принято обозначать буквами ZXA, где Х – символ химического элемента в таблице Менделеева. Ядра с равным значением Z, но различными значениями А именуются изотопами , их существует более трехсот в устойчивой форме и более тысячи в неустойчивой. Изотопы неустойчивого типа способны к слабым взаимодействиям, то есть ядерному распаду и обладают радиоактивностью.

По типу строения модели ядро может быть оболочечным, оптическим, капельным. Оболочечное ядро характерно для легких атомов и выглядит как оболочка самого атома, а нуклоны «размазаны» по оболочке атомного ядра. Физиком Паули для нуклонов выведен такой принцип: на одной орбите не может быть двух нуклонов с одним и тем же спином. Оптическое ядро характерно для средних и тяжелых ядер: ядро окружают частицы с дуальными корпускулярно-волновыми свойствами, при равенстве длины волн возникают дифракция и интерференция. Капельное строение характерно для тяжелых ядер с естественной радиоактивностью: начиная с висмута, радиоактивность имеют все элементы. Тип ядра сравнивается с каплями жидкости, плотность которой при одной температуре и давлении постоянна и не зависит от числа молекул. Применительно к ядру, плотность ядерного вещества постоянна и не зависит от числа нуклонов, имеющих волновые свойства и заряд. Ядро является устойчивым, нуклоны удерживаются ядерными силами сильного взаимодействия со следующими свойствами: 1) они короткодействующие; 2) имеют зарядовую независимость; 3) обладают свойствами насыщения; 4) ориентация спинов определяет их величину. Для разрушения ядра необходимо приложить энергию, разрушение ядер тоже сопровождается выбросом энергии.

55. Взаимодействие между молекулами и химические связи

Молекула – наименьшая частица вещества, сохраняющая его химические свойства и состоящая из атомов, соединенных между собой химическими связями. Существование молекул при помощи броуновского движения доказал в XIX в. Жан Батист Перрен. Молекулы делят на простые и сложные, к простым относят молекулы, состоящие из одинаковых атомов, к сложным – из разных атомов.

Назад Дальше