Равнозначными являются два имени, объёмы которых полностью совпадают. Иными словами, равнозначные имена отсылают к одному и тому же классу предметов, но делают это разными способами.
Равнозначны, к примеру, имена «квадрат» и «равносторонний прямоугольник»: каждый квадрат является равносторонним прямоугольником, и наоборот.
Равнозначность означает совпадение объёмов двух имён, но не их содержаний. Например, объёмы имён «сын» и «внук» совпадают (каждый сын есть чей-то внук и каждый внук – чей-то сын), но содержания их различны.
Отношения между объёмами имён можно геометрически наглядно представить с помощью круговых схем. Они называются по имени математика XVIII в. Л.Эйлера «кругами Эйлера». Каждая точка круга представляет один предмет, входящий в объём рассматриваемого имени. Точки вне круга представляют предметы, не подпадающие под это имя.
Отношение между двумя равнозначными именами изображается в виде двух полностью совпадающих кругов.
Равнозначность
В отношении пересечения находятся два имени, объёмы которых частично совпадают.
Пересекаются, в частности, объёмы имён «лётчик» и «космонавт»: некоторые лётчики являются космонавтами (они представлены заштрихованной частью кругов), есть лётчики, не являющиеся космонавтами, и есть космонавты, не являющиеся лётчиками.
Пересечение
В отношении подчинения находятся имена, объём одного из которых полностью входит в объём другого.
В отношении подчинения находятся, к примеру, имена «треугольник» и «прямоугольный треугольник»: каждый прямоугольный треугольник является треугольником, но не каждый треугольник прямоугольный.
Подчинение
В этом же отношении находятся имена «дедушка» и «внук»: каждый дедушка есть чей-то внук, но не каждый внук является дедушкой. «Внук» – подчиняющее имя, «дедушка» – подчинённое.
Если в отношении подчинения находятся общие имена, то подчиняющее имя называется родом, а подчинённое – видом. Имя «треугольник» есть род для вида «прямоугольный треугольник», а имя «внук» – род для вида «дедушка».
В отношении исключения находятся имена, объёмы которых полностью исключают друг друга.
Исключают друг друга имена «трапеция» и «пятиугольник», «человек» и «планета», «белое» и «красное» и т.п.
Исключение
Можно выделить два вида исключения:
1. Исключающие объёмы дополняют друг друга так, что в сумме дают весь объём рода, видами которого они являются. Имена, объёмы которых исключают друг друга, исчерпывая объём родового понятия, называются противоречащими.
Противоречащими являются, например, имена «умелый» и «неумелый», «стойкий» и «нестойкий», «красивый» и «некрасивый» и т.п. Противоречат друг другу также имена «простое число» и «число, не являющееся простым», исчерпывающие объём родового имени «натуральное число», имена «красный» и «не являющийся красным», исчерпывающие объём родового имени «предмет, имеющий цвет», и т.п.
2. Исключающие имена составляют в сумме только часть объёма того рода, видами которого они являются. Имена, объёмы которых исключают друг друга, не исчерпывая объём родового имени, называются противоположными.
Противоречащие имена Противоположные имена
К противоположным относятся, в частности, имена «простое число» и «чётное число», не исчерпывающие объёма родового имени «натуральное число», имена «красный» и «белый», не исчерпывающие объёма родового имени «предмет, имеющий цвет» и т.п.
Круговые схемы могут применяться для одновременного представления объёмных отношений более, чем двух имён. Такова, к примеру, приводимая на рисунке схема, представляющая отношения между объёмами имён: «планета» (S), «планета Солнечной системы» (P), «Земля» (M), «спутник» (L), «искусственный спутник» (N), «Луна» (O) и «небесное тело» (C). Согласно этой схеме существуют, в частности, небесные тела, не являющиеся ни планетами, ни их спутниками, планеты, не входящие в Солнечную систему, спутники, не являющиеся искусственными, и т.д. Объёмы единичных имён представляются точками.
3. Определение
Определение – логическая операция, раскрывающая содержание имени. Определить имя – значит указать, какие признаки входят в его содержание.
Определяя, например, манометр, мы указываем, что это, во-первых, прибор, и во-вторых, именно тот, с помощью которого измеряется давление. Давая определение имени «графомания», мы говорим, что это болезненное пристрастие к писанию, к многословному, пустому, бесполезному сочинительству.
Важность определений подчёркивал ещё Сократ, говоривший, что он продолжает дело своей матери, акушерки, и помогает родиться истине в споре. Анализируя вместе со своими оппонентами различные случаи употребления конкретного понятия, он стремился прийти в конце концов к его прояснению и определению.
Определение решает две задачи. Оно отличает и отграничивает определяемый предмет от всех иных. Скажем, определение манометра позволяет однозначно отграничить манометры от всех предметов, не являющихся приборами, и отделить манометры по присущим только им признакам от всех иных приборов. Далее, определение раскрывает сущность определяемых предметов, указывает те их основные признаки, без которых они не способны существовать и от которых в значительной мере зависят все иные их признаки.
С этой второй задачей как раз и связаны основные трудности определения конкретных имён.
Дать хорошее определение – значит раскрыть сущность определяемого объекта. Но сущность, как правило, не лежит на поверхности. Кроме того, за сущностью первого уровня всегда скрывается более глубокая сущность второго уровня, за той – сущность третьего уровня и так до бесконечности. Эта возможность неограниченного углубления в сущность даже простого объекта делает понятными те трудности, которые встают на пути определения, и объясняет, почему определения, казалось бы, одних и тех же вещей меняются с течением времени. Углубление знаний об этих вещах ведёт к изменению представлений об их сущности, а значит, и их определений.
Необходимо также учитывать известную относительность сущности: существенное для одной цели может оказаться второстепенным с точки зрения другой цели.
Скажем, в геометрии для доказательства разных теорем могут Использоваться разные, не совпадающие между собой определения понятия «линия». И вряд ли можно сказать, что одно из них раскрывает более глубокую сущность этого понятия, чем все остальные.
Писатель И.Рат-Вег в своей «Комедии книги» упоминает некоего старого автора, чрезвычайно не любившего театр. Отношение к театру этот автор считал настолько важным, что определял через него все остальное. Рай, писал он, это место, где нет театра; дьявол – изобретатель театра и танцев; короли – люди, которым особенно позорно ходить в театр и покровительствовать актёрам, и т.п. Разумеется, эти определения поверхностны со всех точек зрения. Со всех, кроме одной: тому, кто всерьёз считает театр источником всех зол и бед, существующих в мире, определения могут казаться схватывающими суть дела.
Определение может быть более глубоким и менее глубоким, и его глубина зависит прежде всего от уровня знаний об определяемом предмете. Чем лучше, глубже мы знаем предмет, тем больше вероятность, что нам удастся найти хорошее его определение.
Конкретные формы, в которых практически реализуется операция определения, чрезвычайно разнообразны.
Прежде всего нужно отметить различие между явными и неявными определениями.
Первые имеют форму равенства – совпадения двух имён (понятий). Общая схема таких определений: «S есть (по определению) Р». Здесь S и Р – два имени, причём не имеет значения, выражается каждое из них одним словом или сочетанием слов. Явными являются, к примеру, определения: «Антигены – это чуждые для организма вещества, вызывающие в крови и других тканях образование „антител“» и «Пропедевтика есть введение в какую-либо науку». В последнем определении приравниваются друг другу, или отождествляются, два имени: «пропедевтика» и «введение в какую-либо науку».
Неявные определения не имеют формы равенства двух имён.,
Особый интерес среди неявных определений имеют контекстуальные и остенсивные определения.
Всякий отрывок текста, всякий контекст, в котором встречается интересующее нас имя, является в некотором смысле неявным его определением. Контекст ставит имя в связь с другими именами и тем самым косвенно раскрывает его содержание.
Допустим, нам не вполне ясно, что такое удаль. Можно взять текст, в котором встречается слово «удаль», и попытаться уяснить, что именно оно означает.
«Удаль. В этом слове, – пишет Ф.Искандер, – ясно слышится – даль. Удаль – это такая отвага, которая требует для своего проявления пространства, дали.
В слове „мужество“ – суровая необходимость, взвешенность наших действий, точнее, даже противодействий. Мужество от ума, от мужчинства. Мужчина, обдумав и осознав, что в тех или иных обстоятельствах жизни, защищая справедливость, необходимо проявить высокую стойкость, проявляет эту высокую стойкость, мужество. Мужество ограничено целью, цель продиктована совестью.
Удаль, безусловно, предполагает риск собственной жизнью, храбрость.
Но, вглядевшись в понятие „удаль“, мы чувствуем, что это неполноценная храбрость. В ней есть самонакачка, опьянение. Если бы устраивались состязания по мужеству, то удаль на эти соревнования нельзя было бы допускать, ибо удаль пришла бы, хватив допинга.
Удаль требует пространства, воздух пространства накачивает искусственной смелостью, пьянит. Опьянённому жизнь – копейка. Удаль – это паника, бегущая вперёд. Удаль рубит налево и направо. Удаль – возможность рубить, все время удаляясь от места, где уже лежат порубленные тобой, чтобы не задумываться: а правильно ли я рубил?
А все-таки красивое слово: удаль! Утоляет тоску по безмыслию».
В этом отрывке отсутствует явное определение удали. Но можно хорошо понять, что представляет собой удаль и как она связана с отвагой и мужеством.
В «Словаре русского языка» С.И.Ожегова «охота» определяется как «поиски, выслеживание зверей, птиц с целью умерщвления или ловли». Это определение звучит сухо и отрешённо. Оно никак не связано с горячими спорами о том, в каких крайних случаях оправданно убивать или заточать в неволю зверей или птиц. В коротком стихотворении «Формула охоты» поэт В.Бурич так определяет охоту и своё отношение к ней:
Черта горизонта
Птицы в числителе
Рыбы в знаменателе
Умноженные на дробь выстрела
и переменный коэффициент удочки
дают произведение
доступное каждой посредственности.
Завзятый охотник может сказать, что эта образная характеристика охоты субъективна и чересчур эмоциональна. Но тем не менее она явно богаче и красками, и деталями, относящимися к механизму охоты, чем сухое словарное определение.
Контекстуальные определения всегда остаются в значительной мере неполными и неустойчивыми. Не ясно, насколько обширным должен быть контекст, познакомившись с которым, мы усвоим значение интересующего нас имени. Никак не определено также то, какие иные имена могут или должны входить в этот контекст. Вполне может оказаться, что ключевых слов, особо важных для раскрытия содержания имени, в избранном нами контексте как раз нет.
Почти все определения, с которыми мы встречаемся в обычной жизни, – это контекстуальные определения.
Услышав в разговоре неизвестное ранее слово, мы не уточняем его определение, а стараемся установить его значение на основе всего сказанного. Встретив в тексте на иностранном языке одно-два неизвестных слова, мы обычно не спешим обратиться к словарю, а пытаемся понять текст в целом и составить примерное представление о значениях неизвестных слов.
Никакой словарь не способен исчерпать всего богатства значений отдельных слов и всех оттенков этих значений. Слово познаётся и усваивается не на основе сухих и приблизительных словарных разъяснений. Употребление слов в живом и полнокровном языке, в многообразных связях с другими словами – вот источник полноценного знания как отдельных слов, так и языка в целом. Контекстуальные определения, какими бы несовершенными они ни казались, являются фундаментальной предпосылкой владения языком.
Остенсивные определения – это определения путём показа.
Нас просят объяснить, что представляет собой зебра. Мы, затрудняясь сделать это, ведём спрашивающего в зоопарк, подводим его к клетке с зеброй и показываем: «Это и есть зебра».
Определения такого типа напоминают обычные контекстуальные определения. Но контекстом здесь является не отрывок какого-то текста, а ситуация, в которой встречается объект, обозначаемый интересующим нас понятием. В случае с зеброй – это зоопарк, клетка, животное в клетке и т.д.
Остенсивные определения, как и контекстуальные, отличаются некоторой незавершённостью, неокончательностью.
Определение посредством показа не выделяет зебру из её окружения и не отделяет того, что является общим для всех зебр, от того, что характерно для данного конкретного их представителя. Единичное, индивидуальное слито в таком определении с общим, тем, что свойственно всем зебрам.
Остенсивные определения – и только они – связывают слова с вещами. Без них язык – только словесное кружево, лишённое объективного, предметного содержания.
Определить путём показа можно, конечно, не все имена, а только самые простые, самые конкретные. Можно предъявить стол и сказать: «Это – стол, и все вещи, похожие на него, тоже столы». Но нельзя показать и увидеть бесконечное, абстрактное, конкретное и т.п. Нет предмета, указав на который можно было бы заявить: «Это и есть то, что обозначается словом „конкретное“». Здесь нужно уже не остенсивное, а вербальное определение, т.е. чисто словесное определение, не предполагающее показа определяемого предмета.
В явных определениях отождествляются, приравниваются друг к другу два имени. Одно – определяемое имя, содержание которого требуется раскрыть, другое – определяющее имя, решающее эту задачу.
Обычное словарное определение гиперболы: «Гипербола – это стилистическая фигура, состоящая в образном преувеличении, например: „Наметали стог выше тучи“». Определяющая часть выражается словами «стилистическая фигура, состоящая…» и слагается из двух частей. Сначала понятие гиперболы подводится под более широкое понятие «стилистическая фигура». Затем гипербола отграничивается от всех других стилистических фигур. Это достигается указанием признака («образное преувеличение»), присущего только гиперболе и отсутствующего у иных стилистических фигур, с которыми можно было бы спутать гиперболу. Явное определение гиперболы дополняется примером.
Явные определения этого типа принято называть определениями через род и видовое отличие. Поскольку такие определения чрезвычайно распространены и являются как бы образцами определения вообще, их иногда называют также классическими определениями.
Общая схема классических определений: «S есть Р и М». Здесь S – определяемое имя, Р – имя, более общее по отношению к S (род), М – такие признаки, которые выделяют предметы, обозначаемые именем S среди всех предметов, обозначаемых именем Р (вид).
Родо-видовое, или классическое, определение – одно из самых простых и распространённых определений. В словарях и энциклопедиях подавляющее большинство определений относится именно к этому типу. Иногда даже считают, что всякое определение является родо-видовым. Разумеется, это неверно.
К явным определениям и, в частности, к родо-видовым предъявляется ряд достаточно простых и очевидных требований. Их называют обычно правилами определения.
1. Определяемое и определяющее понятия должны быть взаимозаменяемы. Если в каком-то предложении встречается одно из этих понятий, всегда должна существовать возможность заменить его другим. При этом предложение, истинное до замены, должно остаться истинным и после неё.
Для определений через род и видовое отличие это правило формулируется как правило соразмерности определяемого и определяющего понятий: совокупности предметов, охватываемые ими, должны быть одними и теми же.
Соразмерны, например, имена «гомотипия» и «сходство симметричных органов» (скажем, правой и левой руки). Соразмерны также «голкипер» и «вратарь», «нонсенс» и «бессмыслица». Встретив в каком-то предложении имя «нонсенс», мы вправе заменить его на «бессмыслицу» и наоборот.
Если объём определяющего понятия шире, чем объём определяемого, говорят об ошибке слишком широкого определения. Такую ошибку мы допустили бы, определив, к примеру, ромб просто как плоский четырехугольник. В этом случае к ромбам оказались бы отнесёнными и трапеции, и все прямоугольники, а не только те, у которых равны все стороны.
Если объём определяющего понятия уже объёма определяемого, имеет место ошибка слишком узкого определения. Такую ошибку допускает, в частности, тот, кто определяет ромб как плоский четырехугольник, у которого все стороны и все углы равны. Ромб в этом случае отождествляется со своим частным случаем – квадратом, и из числа ромбов исключаются четырехугольники, у которых не все углы равны.
2. Нельзя определять имя через само себя или определять его через такое другое имя, которое, в свою очередь, определяется через него. Это правило запрещает порочный круг.