В поисках памяти - Эрик Кандель 11 стр.


Когда нейрон пребывает в состоянии покоя, потенциалзависимые каналы закрыты. Когда стимулятор повышает мембранный потенциал до порогового уровня, например с -70 до -55 милливольт, потенциал-зависимые натриевые каналы открываются, и ионы натрия устремляются внутрь клетки, вызывая краткое, но резкое увеличение количества положительных зарядов и поднимая мембранный потенциал до +40 милливольт. В ответ на это изменение мембранного потенциала натриевые каналы, открывшись на некоторое время, закрываются, а потенциал-зависимые калиевые каналы ненадолго открываются, увеличивая отток положительно заряженных ионов калия из клетки и быстро возвращая мембранный потенциал к состоянию покоя, — 70 милливольт (рис. 5–5).

5–5. Модель потенциала действия Ходжкина — Хаксли, полученная благодаря использованию внутриклеточного электрода. Приток положительно заряженных ионов натрия (Na+) меняет суммарный заряд внутри клетки и вызывает нарастание потенциала действия. Почти сразу открываются и калиевые каналы, и ионы калия (K+) вытекают из клетки, обеспечивая реполяризацию мембраны и возвращая мембранный потенциал на исходный уровень.


Каждый потенциал действия оставляет клетку с большим, чем должно быть, количеством натрия внутри и с большим количеством калия снаружи. Ходжкин выяснил, что этот дисбаланс исправляется особым белком, который транспортирует избыточные ионы натрия из клетки, а ионы калия — в клетку. В конечном итоге исходные градиенты концентраций натрия и калия восстанавливаются.

После того как потенциал действия возникает на одном участке аксона, создаваемый при этом ток возбуждает соседние участки, вызывая потенциал действия и на них. Происходящая в результате цепная реакция обеспечивает передачу потенциала действия по всей длине аксона от места, где он был вызван первоначально, до окончаний аксона, подходящих к другому нейрону (или мышечной клетке). Этим способом от одного конца нейрона к другому передаются сигналы, обеспечивающие зрительные ощущения, движения, мысли и воспоминания.

За свою концепцию, теперь известную как ионная гипотеза, в 1963 году Ходжкин и Хаксли вместе получили Нобелевскую премию по физиологии и медицине. Впоследствии Ходжкин говорил, что премия должна была достаться кальмару, гигантский аксон которого сделал их эксперименты возможными. Но это проявление скромности не отдает должного сделанным этими двумя исследователями замечательным открытиям — открытиям, которые дали научному сообществу, в том числе новообращенным вроде меня, уверенность в том, что мы сможем разобраться в передаче сигналов в мозгу и на более глубоком уровне.


Когда в нейробиологии стали применять молекулярно-биологические методы, выяснилось, что потенциал-зависимые натриевые и калиевые каналы представляют собой белки. Молекулы этих белков пронизывают клеточную мембрану насквозь и содержат заполненный жидкостью проход — ионную пору, по которой канал и пропускает ионы. Ионные каналы имеются в каждой клетке тела, не только в нейронах, и все они поддерживают мембранный потенциал покоя По тому же принципу, который некогда сформулировал Бернштейн.

Ионная гипотеза примерно так же, как до нее нейронная доктрина, упрочила связь между клеточной биологией мозга и другими областями клеточной биологии. Она окончательно доказала, что в работе нервных клеток можно разобраться, используя физические принципы, общие для всех клеток. Что особенно важно, ионная гипотеза подготовила почву для изучения механизмов передачи нейронных сигналов на молекулярном уровне. Универсальность и предсказательная сила ионной гипотезы объединили в единую дисциплину клеточные исследования нервной системы: эта гипотеза сделала для клеточной биологии нейронов то же, что открытие структуры ДНК — для всей биологии.

В 2003 году, через пятьдесят один год после того, как была сформулирована ионная гипотеза, Родерик Маккиннон из Рокфеллеровского университета удостоился Нобелевской премии по химии за получение первых трехмерных изображений расположения атомов в молекулах двух ионных каналов — проточного калиевого и потенциалзависимого калиевого. Некоторые свойства, выявленные Маккинноном путем весьма новаторского структурного анализа этих двух белков, уже были предсказаны с поразительной проницательностью Ходжкином и Хаксли.


Поскольку движение ионов по каналам через клеточную мембрану имеет принципиальное значение для работы нейронов, а работа нейронов — принципиальное значение для психической деятельности, неудивительно, что мутации в генах, кодирующих белки ионных каналов, вызывают болезни. В 1990 году стало возможным сравнительно несложное и точное определение молекулярных дефектов, ответственных за генетические болезни человека. Вскоре после этого один за другим были выявлены дефекты ионных каналов, лежащие в основе ряда неврологических нарушений работы мышц и мозга.

Такие нарушения теперь называют каналопатиями, или нарушениями функции ионных каналов. К примеру, наследственная идиопатическая эпилепсия (наследственная эпилепсия новорожденных) оказалась связана с мутациями в генах, кодирующих белок калиевого канала. Последними достижениями в исследовании каналопатий и разработкой специфических методов лечения этих нарушений мы непосредственно обязаны обширному запасу знаний о работе ионных каналов, накопленному благодаря Ходжкину и Хаксли.

6. Разговор нервных клеток

Я пришел в лабораторию Гарри Грундфеста в 1955 году, вскоре после того, как в нейробиологии возник серьезный спор о том, как нейроны передают сигналы друг другу. Эпохальные работы Ходжкина и Хаксли позволили разрешить давнюю загадку, как электрические сигналы возникают в нейронах, но как они распространяются между нейронами? Чтобы один нейрон мог «говорить» с другим, он должен посылать сигнал через синапс, промежуток между клетками. Что же это за сигнал?

Грундфест и другие ведущие нейрофизиологи того времени твердо верили, пока в начале пятидесятых их представления не опровергли, что этот краткий сигнал, передающийся через промежуток между клетками, имеет электрическую природу, что потенциал действия в постсинаптическом нейроне начинается благодаря электрическому току, вызванному потенциалом действия в пресинаптическом нейроне. Но начиная с конца двадцатых стали накапливаться данные, свидетельствующие о том, что сигнал, передающийся между некоторыми нервными клетками, может иметь химическую природу. Эти данные были получены в ходе исследований нейронов вегетативной или автономной нервной системы. Вегетативная нервная система считается частью периферической, потому что тела ее нейронов располагаются в скоплениях, называемых периферическими вегетативными ганглиями, которые находятся возле самого спинного мозга и мозгового ствола, но за их пределами. Автономная нервная система управляет жизненно важными непроизвольными действиями, такими как дыхание, сердцебиение, поддержание кровяного давления и пищеварение.

Эти новые данные положили начало химической теории синаптической передачи и привели к спору, который в шутку называли «суп или искра»: «искровики», такие как Грундфест, считали, что синаптическая передача имеет электрическую природу, «суповики» — что химическую.


Химическая теория синаптической передачи возникла благодаря исследованиям Генри Дейла и Отто Леви. В двадцатых годах и начале тридцатых они изучали сигналы, посылаемые вегетативной нервной системой в сердце и некоторые железы. Работая независимо друг от друга, они открыли, что, когда потенциал действия, распространяющийся по нейрону вегетативной нервной системы, достигает окончаний его аксона, он вызывает выделение определенного химического вещества в синаптическую щель. Это вещество, которое мы теперь называем нейромедиатором, преодолевает синаптическую щель и достигает клетки-мишени, где его узнают и связывают особые рецепторы, расположенные на наружной поверхности мембраны этой клетки.

Леви, родившийся в Германии и работавший в Австрии физиолог, исследовал те два нерва, то есть пучка аксонов, которые управляют сердцебиением: блуждающий нерв, снижающий частоту сердцебиения, и ускоряющий нерв сердца, повышающий эту частоту. В ходе ключевого эксперимента на лягушках он стимулировал блуждающий нерв, вызывая в нем потенциалы действия, приводившие к снижению частоты сердцебиения. При этом во время и сразу после стимуляции блуждающего нерва он быстро собирал жидкость, окружающую сердце лягушки, и вводил эту жидкость в сердце другой лягушки. Как ни удивительно, у второй лягушки тоже замедлялось сердцебиение! Это не было вызвано никакими потенциалами действия, вместо них вещество, выделяемое блуждающим нервом первой лягушки, передавало замедляющий сердце сигнал.

Впоследствии Леви и британский фармаколог Дейл показали, что вещество, выделяемое блуждающим нервом, представляет собой несложное химическое соединение ацетилхолин. Ацетилхолин играет роль нейромедиатора и замедляет сердцебиение, связываясь с особым рецептором. Вещество, выделяемое ускоряющим нервом сердца, родственно адреналину, еще одному несложному соединению. За открытие первых свидетельств того, что сигналы, передаваемые от одного нейрона вегетативной нервной системы к другому через синапсы, переносятся специфическими химическими медиаторами, Леви и Дейл в 1936 году разделили Нобелевскую премию по физиологии и медицине.

Через два года после получения Нобелевской премии Леви на собственном опыте убедился в том, с каким презрением австрийские нацисты относились к науке. Через день после того, как Гитлер въехал в Австрию под приветственные крики миллионов моих сограждан, Леви, ученый, двадцать девять лет работавший профессором фармакологии в Грацском университете, оказался за решеткой, потому что был евреем. Через два месяца его отпустили при условии, что он переведет свою долю Нобелевской премии, по-прежнему хранившуюся в шведском банке, в контролируемый нацистами австрийский банк и немедленно покинет страну. Так он и сделал и вскоре стал профессором в медицинской школе Нью-Йоркского университета, где несколько лет спустя мне довелось присутствовать на его лекции о сделанном им открытии химической передачи сигналов в сердце.

Новаторские работы Леви и Дейла по исследованию вегетативной нервной системы убедили многих нейробиологов, имевших уклон в фармакологию, что клетки центральной нервной системы, по-видимому, тоже используют нейромедиаторы для передачи сигналов через синаптическую щель. Однако некоторые электрофизиологи, в том числе Джон Экклс и Гарри Грундфест, продолжали в этом сомневаться. Они признавали значение химической передачи для вегетативной нервной системы, но были убеждены, что в головном и спинном мозге сигналы передаются просто слишком быстро, чтобы иметь химическую природу. Поэтому они по-прежнему придерживались теории электрической передачи применительно к центральной нервной системе. Экклс выдвинул гипотезу, что ток, производимый потенциалом действия в пресинаптическом нейроне, пересекает синаптическую щель и входит в постсинаптическую клетку, где усиливается, запуская в этой клетке потенциал действия.


Когда методы регистрации электрических сигналов усовершенствовались, в синапсах между мотонейронами и скелетными мышцами был обнаружен слабый электрический сигнал — доказательство того, что потенциал действия пресинаптического нейрона не сразу вызывает в мышечной клетке потенциал действия, а вначале порождает в ней намного более слабый сигнал особого рода, названный синаптическим потенциалом. Оказалось, что синаптические потенциалы отличаются от потенциалов действия по двум параметрам: они намного медленнее, а их амплитуда может варьировать. Поэтому на репродукторе вроде того, который использовал Эдриан, синаптический потенциал звучал бы как тихое, медленное продолжительное шипение, а не как резкое «бах-бах-бах» потенциала действия, причем громкость этого шипения могла бы варьировать. Открытие синаптического потенциала доказывало, что нервные клетки используют два типа электрических сигналов: потенциал действия для передачи сигналов на большие расстояния и синаптический потенциал для локальной передачи, чтобы переправить информацию через синапс.

Экклс сразу осознал, что именно синаптические потенциалы ответственны за открытую Шеррингтоном «интегративную деятельность нервной системы». В любой момент времени на всякую клетку любого проводящего пути сыплется множество синаптических сигналов, как возбуждающих, так и тормозящих, но у клетки есть только две альтернативы: запускать или не запускать потенциал действия. Более того, базовая задача нервной клетки состоит именно в интеграции сигналов: клетка суммирует получаемые ею от пресинаптических клеток возбуждающие и тормозящие синаптические потенциалы и запускает потенциал действия лишь тогда, когда сумма возбуждающих сигналов превышает сумму тормозящих на величину, большую, чем некоторое пороговое значение. Экклс понял, что именно способность нейронов суммировать все возбуждающие и тормозящие синаптические потенциалы, поступающие по ведущим к данному нейрону аксонам других нейронов, и обеспечивает описанное Шеррингтоном постоянство поведенческих реакций.

К середине сороковых годов сторонники обеих теорий признали, что синаптический потенциал возникает во всех постсинаптических клетках и составляет ключевое связующее звено между потенциалом действия в пресинаптическом и постсинаптическом нейронах. Но это открытие лишь уточняло предмет разногласий: электрическим или химическим путем вызываются синаптические потенциалы в центральной нервной системе?

Дейл и его коллега Уильям Фельдберг, еще один эмигрант из Германии, совершили прорыв в этой области, установив, что ацетилхолин, который используется в автономной нервной системе для замедления сердца, выделяется также мотонейронами спинного мозга, возбуждающими скелетные мышцы. Это открытие подвигло Бернарда Каца разобраться, вызывается ли синаптический потенциал в скелетных мышцах ацетилхолином.

Кац, учившийся медицине в Лейпцигском университете и еще студентом получивший за свои исследования престижную премию, покинул гитлеровскую Германию в 1935 году — потому что был евреем. Он переехал в Англию, где его взяли в лабораторию Арчибальда Хилла в Университетском колледже Лондона. В феврале этого года Кац прибыл в английский порт Харвич, не имея при себе паспорта, и это был, как он впоследствии вспоминал, «жуткий опыт». Через три месяца после этого Кац присутствовал на конференции в Кембридже, где сидел в первых рядах во время перебранки на тему «суп или искра». «К моему огромному изумлению, — писал он впоследствии, — я был свидетелем чуть ли не рукопашного боя между Дж. Экклсом и Г. Дейлом, в котором председательствующий Эдриан очень смущенно и неохотно пытался играть роль судьи». Джон Экклс, лидер «искровиков», представил работу, решительно оспаривавшую ключевой тезис лидера «суповиков» Генри Дейла и его коллег — что ацетилхолин играет в нервной системе роль медиатора, передавая сигналы по синапсам. «Мне было довольно сложно уловить нить этого спора, так как я был не вполне знаком с терминологией, — вспоминал Кац. Слово „медиатор“ напоминало мне что-то из области радио-связи, и поскольку в итоге получалась бессмыслица, предмет спора приводил меня в некоторое замешательство».

На самом деле, не считая того, что приводило Каца в замешательство, одна из проблем с химическими медиаторами состояла в том, что никто не знал, как электрический сигнал в пресинаптическом окончании может вызывать выделение медиатора и как затем этот химический сигнал в постсинаптическом нейроне преобразовывается в электрический. В течение следующих двух десятилетий Кац принимал участие в попытках ответить на эти вопросы и прояснить для центральной нервной системы то, что Дейл и Леви прояснили для вегетативной.

Однако, как и в случае с Ходжкином и Хаксли, угроза войны на время прервала работу Каца. В августе 1939 года, за месяц до того, как разразилась Вторая мировая, Кац, чувствовавший себя в Лондоне неуютно как чужестранец из Германии, принял предложение Джона Экклса, который приглашал его в Австралию на работу в своей лаборатории в Сиднее.

Случилось так, что еще один ученый, уехавший из Европы, спасаясь от нацистов, Стивен Куффлер, который тоже оказал на меня большое влияние, также в итоге оказался в Сиднее и стал работать в лаборатории Экклса (рис. 6–1). Куффлер начинал как врач, затем стал физиологом. Он родился в Венгрии, а учился в Вене, откуда в 1938 году уехал, потому Я что в придачу к тому, что его дедушка был еврей, сам он был социалистом. В Австрии Куффлер был чемпионом по теннису среди юношей и впоследствии шутил, что Экклс пригласил его в свою лабораторию потому, что ему требовался достойный партнер по теннису. Хотя Экклс и Кац как ученые были намного опытнее, Куффлер поразил их своим хирургическим искусством. Препарируя мышцы, он умел выделять отдельные волокна, чтобы исследовать синаптический вход одного мотонейрона к одному мышечному волокну, а для этого требовалось редкое мастерство.

6–1. Трое первопроходцев в области исследований синаптической передачи вместе работали в Австралии во время Второй мировой войны, а впоследствии внесли весомый вклад в эту область независимо друг от друга. Стивен Куффлер (слева, 1918–1980) описал свойства дендритов раков, Джон Экклс (в центре, 1903–1997) открыл синаптическое торможение в спинном мозгу, а Бернард Кац (справа, 1911–2002) прояснил механизмы синаптического возбуждения и химической передачи сигналов. (Фото любезно предоставил Дэмьен Куффлер).

Назад Дальше