К началу 1990-х годов в лаборатории Ферми предположили существование шестого, истинного кварка.
Из кварков, образно говоря, и состоят почти все известные элементарные частицы. По мнению ученых, кварки объединяются в элементарные частицы благодаря глюонам. Скорее всего, гипотетические кварки и есть гипотетические амеры Демокрита.
Итак, атомные ядра всех без исключения элементов состоят из протонов и нейтронов.
Силы между нейтроном и протоном образуют взаимодействие неэлектромагнитной природы. И они настолько велики, что это взаимодействие назвали сильным ядерным взаимодействием. Сильное взаимодействие между двумя протонами в 1038 раз мощнее, чем гравитационное взаимодействие между ними.
Правда, действуют эти силы только на очень близком расстоянии, равном примерно двум-трем диаметрам нейтрона, и не существуют вне ядра.
Эти нейтроны и протоны находятся в непрерывном движении. Обладая, как и электроны, квантовой природой, нейтроны реагируют на ограничение в пространстве увеличением скорости вращения, а так как им отводится более ограниченный объем, чем электронам, их скорость очень высока – около 100 тысяч км/с.
И если бы мы заглянули в атом железа, мы увидели бы, что двадцать шесть электронных облачков в стремительном вихре вращаются вокруг ядра, состоящего из двадцати шести протонов и тридцати нейтронов, которые, в свою очередь, в бешеном ритме танцуют ламбаду, причем танцоры чередуются, и пары меняются.
Уму непостижимо, как им удается не толкаться и не путаться в парах на такой сумасшедшей скорости. Непонятно, почему не сталкиваются друг с другом электроны, проносящиеся по своим орбитам вокруг ядра на огромной скорости [13].
Этот многослойный бушующий мир состоит из субатомных частиц, движущихся по различным орбитам с дикой скоростью, «танцующих» замечательный танец жизни под музыку, которую кто-то сочинил. А ведь речь идет о железе!
Невольно напрашивается вопрос: кто сочинил музыку для удивительного танца субатомных частиц, кто задал информационную программу и научил пары танцевать, в какой момент начался этот танец? Иными словами: как образуется материя, кто ее создал, когда это случилось? Каким образом и из чего образовался протон, как атом жизни? Следуя теории относительности, протон должен образоваться из энергии.
Чтобы подтвердить возможность образования материальных частиц из энергии и получить новые частицы, ученые проводят исследования на ускорителях частиц.
Эксперименты на БАК
Высокоэнергетические столкновения субатомных частиц – основной метод, который используют физики для изучения их свойств, и по этой причине физика частиц также носит название физики высоких энергий. Кинетическая энергия обеспечивается в огромных (достигающих в окружности нескольких километров) ускорителях частиц, в которых частицы разгоняются до скорости, близкой к скорости света, а затем сталкиваются с другими частицами.
Энергия, заключенная в массах сталкивающихся частиц, преобразуется частично в кинетическую энергию других участников столкновения, а частично – в массы новых частиц. Вот эти новые частицы и интересуют исследователей в первую очередь.
Рассмотренный этап эксперимента называется подготовкой. Свойства частицы нельзя определить вне зависимости от самого процесса подготовки. Если в подготовку вносятся изменения, свойства частицы тоже изменяются.
Возникновение материальных частиц из чистой энергии является прекрасным подтверждением правильности положения ОТО, утверждающей, что масса – это одна из форм энергии [13].
С целью получения и изучения новых частиц ученые начали разгонять почти до скорости света потоки протонов, направленные навстречу друг другу. Ускорители таких встречных потоков называются коллайдерами.
Столкновения частиц – основной экспериментальный метод для изучения их свойств и взаимодействий, и красивые линии, спирали и дуги, зафиксированные на информационных носителях, имеют первостепенное значение для современной физики. Подвергая математическому анализу следы частиц, ученые могут говорить о свойствах этих частиц; при этом часто используют компьютеры, ибо анализ очень сложен. Все эти процессы составляют акт измерения.
В начале XXI века в Цюрихе совместными усилиями Германии, Франции и России был создан самый мощный на сегодня Большой адронный коллайдер (БАК), который представляет собой 27-километровое электромагнитное кольцо, закопанное на глубине 100 метров. Его создание обошлось в 2 миллиарда долларов (см. фото на вклейке).
В конце 2010 года появилось сообщение о том, что ученые провели первый «полнометражный» эксперимент на БАК – разогнали встречные пучки протонов до энергий в 3,5 тетраэлектронвольта. В результате энергия столкновения достигла небывалой величины – 7 тетраэлектронвольт.
По замыслу ученых, БАК позволит им смоделировать Большой взрыв, то есть сотворить так называемую кварк-глюонную плазму. Это невероятно горячий (до 10 триллионов °С) «суп» из протоматерии. В таком состоянии, по мнению ученых, Вселенная находилась через доли наносекунды после своего рождения.
Имитируя на Большом адронном коллайдере состояние Вселенной через доли наносекунды после ее рождения, ученые хотят узнать, как образуется материя. Они надеются «сотворить» материю, то есть добиться того, что кварки и глюоны объединятся в наделенные массой протон и нейтрон. Каким образом появляется масса? Это вопрос вопросов. Разбить протон на кварки оказалось проще, чем наоборот. Разрушать всегда легче, чем собирать.
По мнению ученых, должна появиться некая гипотетическая квазичастица (квази – почти), так называемый бозон Хиггса, который заставит глюоны собрать кварки в протон, наделив его массой. Если это удастся, то они, ученые, «сотворят» материю и разберутся в природе сильного взаимодействия.
За счет столкновения пучков протонов ученым удалось имитировать состояние легкой кварк-глюонной плазмы, которое моделирует праматерию через 10–34 секунды после Большого взрыва. Но праматерия не обладает массой. Не обнаружив желанного бозона Хиггса, ученые стали разгонять и сталкивать тяжелые ионы свинца, благодаря чему получили состояние тяжелой кварк-глюонной плазмы, моделирующей праматерию через 10–11 секунды после Большого взрыва, то есть гораздо позднее. Но она по-прежнему не обладает массой. Бозон Хиггса так и не обнаружился, материи из праматерии пока так и не получилось. Только энергия, движущаяся в миллиарды раз более интенсивно, чем она движется в центре Солнца. Наука пока не сумела продублировать Творца!
Однако последние новости ЦЕРН (13.12.2011) дали некоторую надежду на обнаружение неуловимого бозона. Ученым удалось получить предварительные данные, указывающие на то, что существует некая частица, которая очень похожа на бозон Хиггса. Для более уверенных утверждений потребуется дальнейший набор статистики, который начнется лишь весной следующего года [14].
Словом, неслучайно Творец в «Откровениях людям Нового века» очень высоко оценивает нашу земную науку. Он говорит: «Как это ни парадоксально звучит, но к Богу, к признанию Создателя, к Истине первыми пришли и идут ученые! Я пою Гимн ученым. Я пою Гимн их успехам в понимании мироустройства, энергетического строения миров, полет их высок, и успехи впечатляющие!»
Более того, Творец подчеркивает, что именно благодаря достижениям науки современное человечество не будет уничтожено. Ему будет дан шанс преодолеть квантовый переход.
Благодарим за внимание.
Литература
1. Ливанова А. Три судьбы постижения мира. Жизнь замечательных идей. М.: Знания, 1969.
2. Запорожец В. М. Начала естествознания двадцать первого века. М.: 2001.
3. Хокинг С. Краткая история времени. От Большого взрыва до черных дыр. СПб.: Амфора, 2005.
4. Проверка теории относительности // http://bannerweek.argoart.ru/?id=76211
5. Ацюковский В. А. Блеск и нищета теории относительности Эйнштейна // http://www.nbrilev.ru/problemy_teorii_otnositelnosty.htm
6. Букалов А. Теорию относительности проверяют на прочность // http://www.itar-tass.com/c19/260019.html
7. Ученые пошатнули теорию относительности Эйнштейна // http://2012over.ru/uchenie-poshatnuli-teoriju-otnositelnosti-jejjnshtejjna.html
8. Аксенов А. П., Пак В. В. Знахарь и ученый о чистой и нечистой силе. М.: Астрель, 1997.
9. Физический энциклопедический словарь. М.: Советская энциклопедия, 1984.
10. Шубейкина Т. Д. Новое представление и осмысление периодического закона Д. И. Менделеева через синтез науки, религии и философии // Сознание и физическая реальность. Т. 16. 2011. № 4. С. 2–21.
11. Шубейкина Т. Д. Единая спираль эволюции: новая физика сознания //Сознание и физическая реальность. Т. 17. № 4. 2012. С. 2–15.
6. Букалов А. Теорию относительности проверяют на прочность // http://www.itar-tass.com/c19/260019.html
7. Ученые пошатнули теорию относительности Эйнштейна // http://2012over.ru/uchenie-poshatnuli-teoriju-otnositelnosti-jejjnshtejjna.html
8. Аксенов А. П., Пак В. В. Знахарь и ученый о чистой и нечистой силе. М.: Астрель, 1997.
9. Физический энциклопедический словарь. М.: Советская энциклопедия, 1984.
10. Шубейкина Т. Д. Новое представление и осмысление периодического закона Д. И. Менделеева через синтез науки, религии и философии // Сознание и физическая реальность. Т. 16. 2011. № 4. С. 2–21.
11. Шубейкина Т. Д. Единая спираль эволюции: новая физика сознания //Сознание и физическая реальность. Т. 17. № 4. 2012. С. 2–15.
12. Хайш Б. Теория Бога. Доказательство существования Бога в современной науке. К.: София, 2010.
13. Тихоплав В. Ю., Тихоплав Т. С. Новая физика веры. СПб.: Крылов, 2007.
14. Большой адронный коллайдер // http://elementy.ru/LHC/news
Лекция № 15. Развитие рациональной науки. Волновая механика
Квантовая физика
Дорогие друзья!
В одном из посланий Крайон говорит: «Чем больше вы будете узнавать о структуре атома, тем яснее для вас будет становиться Тонкий мир. Именно понимание поведения элементарных частиц – ключ к этому» [1].
Шаг в мир атомов был первым и самым важным шагом в путешествии в мир бесконечно малого. Но проникнув под оболочку атома, изучая его внутреннее устройство, наука вынуждена была нарушить свои же собственные установки: все посмотреть, пощупать, измерить, взвесить и т. д.
Исследование субатомного мира не отвечало этим требованиям. С этого момента наука уже не могла с уверенностью опираться на логику и здравый смысл. Налицо нарушение принципа, высказанного Фрэнсисом Бэконом. А уж развитие квантовой физики заставило вообще забыть об этом устаревшем требовании, выдвинутом в XVII веке: все увидеть и все потрогать. Оковы, которые сдерживали науку почти четыре столетия, были сброшены, и полет научной мысли привел к открытию поразительных знаний, ведущих человечество к Богу.
Познакомиться с успехами ученых в понимании мироустройства – это значит познакомиться с квантовой физикой, с удивительной наукой, которая перевернула все наши представления об окружающем мире. А точнее, вернула все на свои места, поставила все с головы на ноги.
Датой появления квантовой физики, которая заставит науку заниматься информационными взаимодействиями, сознанием и Тонким миром, является 1900 год. Основателем ее признан Макс Планк.
Пожалуй, стоит подчеркнуть, что в отличие от теории относительности, разработанной Эйнштейном самостоятельно, законы квантовой механики были сформулированы благодаря усилиям физиков разных стран: датчанина Нильса Бора, француза Луи де Бройля, австрийцев Эрвина Шредингера и Вольфганга Паули, немцев Макса Планка и Вернера Гейзенберга, англичанина Поля Дирака и других. Огромная заслуга в развитии этой науки принадлежит Альберту Эйнштейну.
В начале ХХ века Макс Планк, великий немецкий физик, исходя из результатов экспериментов, высказал идею, что свет (электромагнитное излучение) испускается не непрерывно, как это следует из теории излучения, а дискретно – порциями. Например, теплота от нагретой поверхности испускается непрерывно, а свет от источника, оказывается, испускается порциями.
Минимальную порцию энергии электромагнитного излучения Планк назвал квантом энергии. А процесс деления энергии на порции (на кванты) был назван квантованием.
Планк нашел формулу для определения величины этого кванта энергии. Формула проста: квант энергии равен некой константе, умноженной на частоту света. Эта некая константа оказалась фундаментальной константой квантования, которую благодарное человечество назвало постоянной Планка (а фундаментальных констант не так уж много: заряд и масса электрона, скорость света в пустоте и… постоянная Планка).
Постоянная Планка (h = 6,62 10–27 эрг с) устанавливает минимальный предел измерений всех физических параметров. Она определяет масштабы квантовых явлений и, главное, границы применимости классической и квантовой физики.
Вследствие чрезвычайно малой величины постоянной Планка квантование в макроскопических физических экспериментах остается незамеченным.
Лауреат Нобелевской премии, российский физик, академик РАН В. Л. Гинзбург утверждал, что, исходя из расчетов Планка, мы можем представить Вселенную, состоящей из частиц величиной 10–33 м. То есть наша Вселенная – это квантовая Вселенная!
Однако приборы и сенсоры, которыми мы усиливаем свои органы чувств, позволяют выделить частицы и их характеристики величиной до 10–16 м. А это значит, что наши знания о Вселенной далеко не полны.
Квантовая физика, собственно, и называется «квантовой», потому что изучает наше мироздание на микроуровне, на уровне квантов.
В 1905 году Эйнштейн доказал, что свет не только испускается и поглощается, но и распространяется квантами, то есть поток света состоит из квантов энергии, а проще – из квантов света. Световые кванты стали называть фотонами.
По поводу фотона есть и другая точка зрения. Доктор технических наук, академик РАЕН В. А. Ацюковский утверждает, что фотон – не электромагнитная волна! Такое утверждение было сделано после тщательного теоретического и экспериментального исследований эфира. Ацюковский пишет: «Почему фотоны проникают в морскую воду не так, как электромагнитная волна? Потому что они имеют разную структуру. В электромагнитной волне каждый полупериод существует сам по себе, поскольку движения эфира в каждом полупериоде направлены по-разному. В фотоне же потоки эфира переходят из одного ряда вихрей в другой, нигде не прерываясь. Весь фотон – единая энергетическая структура… Фотон – не электромагнитная волна, вот что отсюда вытекает» [2].
Эксперименты показали, что: фотон – это элементарная частица с нулевой массой покоя и положительной энергией. Что значит – «с нулевой массой покоя»? Это значит, что свет не существует в остановленном виде.
Однако русским ученым-физикам, работающим в Бостоне на базе астрофизической лаборатории Гарвардского университета, удалось остановить луч света. Правда, всего лишь на долю секунды, но остановили!
Как сообщил Михаил Лукин, выпускник Московского физико-технического института, ныне руководитель лаборатории в Гарвардском университете, им удалось не только сохранить в рубидиевой среде, помещенной в магнитное поле, информацию об импульсе, выпущенном из лазера, но потом и восстановить ее в полном объеме, после чего импульс продолжил движение со скоростью в 297 000 км/с. Пока в астрофизической лаборатории Гарварда Михаилу Лукину и его американскому коллеге Рональду Уолсуорду удается останавливать свет только на одну тысячную секунды [3].
А можно ли «заморозить» световой луч на время большее, чем одна тысячная секунды?
«Законов, запрещающих это, нет, – подчеркнул заведующий лабораторией лазерной спектроскопии Института спектроскопии РАН профессор Владилен Летохов. – И я не могу утверждать, что это в принципе невозможно. Квантовая физика это не запрещает».
А что вообще такое элементарные частицы? Когда появился этот термин, под элементарными частицами понимали первичные, далее уже неделимые частицы, из которых состоит вся материя. А потом оказалось, что эти, так сказать, неделимые частицы делятся. И в современной физике термин «элементарные частицы» используется для наименования большой группы мельчайших частиц, которые не являются атомами или атомными ядрами (за исключением протона, который в гордом одиночестве представляет собой ядро водорода).
Мы с вами используем понятие «элементарные частицы» в качестве общего названия субъядерных частиц.
Познакомившись поближе с планетарной моделью атома, согласно которой ядро играет роль Солнца, а электроны – роль планет, вращающихся вокруг него, ученые сразу же столкнулись с проблемой. Какой?
Дело в том, что вращающийся вокруг атомного ядра электрон, двигаясь ускоренно по орбите, по всем классическим законам должен излучать электромагнитные волны (свет) и терять энергию. В результате он неминуемо должен упасть на ядро, что означало бы гибель атома. Но атом стабилен, электроны свет не излучают и на ядро не падают. Почему?
Рассматривая принцип работы лазера, мы познакомились с постулатами Бора по поводу стационарных орбит, по которым движутся электроны в атоме. Излучение или поглощение энергии происходит только при переходе электрона с одной орбиты на другую.
Напомним, что, стремясь объяснить устойчивость атома в рамках модели Резерфорда, Нильс Бор в 1913 году предположил, что у атома есть такие стационарные орбиты, находясь на которых электрон не излучает фотонов (света). Разные орбиты соответствуют разным уровням энергии. Когда электрон переходит с одной орбиты на другую, он или излучает, или поглощает один фотон. Если переход происходит с орбиты высокого уровня энергии на орбиту низкого уровня, фотон излучается. И наоборот [4].