Математика в занимательных рассказах - Перельман Яков Исидорович 10 стр.


Рассмотрим сначала, можно ли уплатить требуемым образом пять рублей. Пусть для этого нужно × полтинников, у — двугривенных и z — пятаков. Сумма их должна составить 500 копеек, т. е.


50х + 20у + 5z = 100,


или, разделив на 5,


10х + 4у + z = 100.


Это легко осуществить на разные лады. Если, например, взять х = 8, то будем иметь


80 + 4у + z = 100,


или


4у + z = 20;


последнему уравнению можно удовлетворить, если принять z = 4, или 8, или 12, или 16 и, следовательно, (при z = 4) 4у = 16, у = 4. Действительно, 8 полтинников, 4 двугривенных и 4 пятака составляют 500. Однако при этом не выполнено условие употребить в общей сложности 20 монет: мы употребили 8 + 4 + 4 = 16 монет. К нашему первому уравнению


10х + 4у + z = 100


необходимо, следовательно, присоединить второе


x + у + z = 20.


Соединяя их в одно, посредством вычитания второго из первого, мы освобождаемся от z и получаем


+ Зу = 80;


теперь сразу становится очевидным, что не может быть таких целых чисел, которые удовлетворили бы этому уравнению. Потому что 9 раз х, каково бы ни было х, есть непременно число, кратное 3; то же верно для числа Зу; следовательно, сумма 9х + Зу должна делиться без остатка на 3, то есть никак не может равняться 80.

Задача приводит к противоречивому требованию, и значит — ее решение невозможно.

Совершенно так же невозможно и составление требуемым образом сумм в 3 рубля и в 2 рубля. В первом случае, как каждый легко может убедиться, получается уравнение:


9х+3у = 40;


во втором:


9х+ Зу = 20.


Оба равенства невозможны, так как ни 40, ни 20 не делятся без остатка на 3.

Сказанным задача собственно исчерпывается. Но поучительно присоединить к ней рассмотрение вопроса, какие же суммы можно этими 20-ю монетами в самом деле уплатить, — разумеется так, чтобы получилось целое число рублей.

Если обозначим это число рублей через т, то у нас будет уравнение:


50х + 20у + 5 z= 100m,


или


10х + 4y + z= 20 т,


при условии, что


х + у + z = 20,

откуда путем вычитания имеем:


9х + Зу = 20 т — 20 = 20 (т— 1).


Так как 9х + 3у кратно 3, то и 20 (т— 1) должно быть кратно 3.

Но 20 не делится на 3, так что кратным 3 должно быть только т — 1.

Если — 1) равно 0, 3, 6, 9, 12 и т. д., то т должно быть на единицу больше, т. е. одно из чисел: 1, 4, 7, 10, 13 и т. д. Только такие суммы рублей могут быть уплачены нашими 20-ю монетами. Но очевидно, что 10 рублей — наибольшая сумма, так как 20 полтинников составляют уже 10 рублей. Принимая поэтому только четыре возможных суммы — в 1 р., в 4 р., в 7 р. и в 10 р., имеем четыре случая:


9х + Зу — 20 (т — 1) = 0, или 60, или 120, или 180,


другими словами,


Зх + у = 0, или 20, или 40, или 60.


Только эти случаи и надо рассмотреть.


1) Один рубль. Зх + у = 0.


Это равенство возможно лишь тогда, когда и × и у равны нулю, так как, приняв для них даже наименьшее целое число 1, получим 4, а не 0. Единственное решение для этого случая, следовательно, есть × = 0, у = 0, а потому z = 20, т. е.

один рубль можно уплатить, только употребив 20 пятаков.

Рассмотрим теперь другой крайний случай:


2) Десять рублей. Зх + у = 60.


Так как у должно быть кратно 3 (иначе сумма его с Зх не делилась бы без остатка на 3), то примем у = 0, 3, 6… Для случая у = 0 имеем × = 20 и г = 0. Это дает нам уже упомянутое решение: 20 полтинников. Но оно и единственное, потому что для у = 3 имеем × = 19, и (х + у) превышает высшую сумму 20.


3) Четыре рубля. Зх + у = 20.


Принимая


х =0, 1, 2, 3, 4, 5, 6, 7, 8…,


получаем, что


у = 20 = 3х = 20, 17, 14, 11, 8, 5, 2 (-1, -4…).


Имеют смысл, очевидно, только первые семь значений. Им соответствуют


z = 0,2,4, 6,8, 10, 12.


Четыре рубля можно, как видим, уплатить 7-ю различными способами, например: 6 полтинниками, 2 двугривенными и 12 пятаками.


4) Семь рублей. Зх + у = 40.


Здесь не приходится рассматривать значения для × от 0 до 9, так как при этом для у получаются числа от 40 до 13, и (х + у) составляет, по меньшей мере, 22, что нарушает требование. Остается рассмотреть поэтому лишь случаи:


х= 10, И, 12, 13,


причем


у = 40-3х= 10, 7, 4, 1,

z = 0,2, 4, 6.


Остальные случаи исключаются, так как ближайшее у уже отрицательное.

Этим вопрос исчерпывается полностью. Кто хотя бы немного имел дело с уравнениями, тот заметил, вероятно, что здесь не приходится оперировать так механически, как обычно. Это оттого, что мы имеем в нашем случае больше неизвестных, нежели уравнений, а именно — 3 неизвестных при 2 уравнениях. Неизвестное z мы устранили и получили одно уравнение с двумя неизвестными хи у. Поэтому задача становится неопределенной; можно лишь установить взаимную обусловленность чисел × и у, так что для любого × можно найти соответствующее значение у. В сущности, имеется бесконечное множество пар решений задач такого рода. Но число их ограничивается требованием, вытекающим из сущности задачи, а именно: либо чтобы искомые числа были целые (как в нашей задаче, где речь идет о монетах), либо чтобы они не были отрицательные (наш случай), либо чтобы их сумма не превышала определенного числа (у нас — 20-ти), и т. п.

Итак, возвращаясь к первоначальной задаче, скажем: счетчик мог безопасно посулить сколь угодно большую награду — задача неразрешима. Для вас тем самым открывается легкая возможность предлагать своим друзьям крепкие головоломки. Можете обещать им величайшую награду — не попадетесь: как истые математики, вы можете быть твердо уверены в себе. А кто пожелал бы узнать подробнее об уравнениях вроде рассмотренных выше, пусть спросит своего учителя математики о Диофанте Александрийском.

Примечание редактора Диофант Александрийский

Упомянутый в конце очерка александрийский математик Диофант жил в III веке нашей эры. Им написана была «Арифметика», от которой до нас дошла только первая половина сочинения. В этом труде рассматриваются, между прочим, неопределенные уравнения, которые Диофантом и были впервые введены в математику; поэтому имя его осталось навсегда связанным с этими уравнениями.

О жизни Диофанта известно лишь то, что сообщается в надписи, сохранившейся на его могильном памятнике, — надписи, которая составлена в форме следующей задачи:

Составив уравнение:


узнаем из его решения (х = 84), что Диофант умер 84 лет, женился 21 года, стал отцом на 38 году и потерял сына на 80 году.

Числовые анекдоты Барри Пэн[38]

1

— Еще веревочку? — спросила мать, вытаскивая руки из лоханки с бельем. — Можно подумать, что я вся веревочная. Только и слышишь: веревочку да веревочку. Ведь я вчера дала тебе порядочный клубок. На что тебе такая уйма? Куда ты ее девал?

— Куда девал бечевку? — отвечал мальчуган. — Во-первых, половину ты сама же взяла обратно…

— А чем же прикажешь мне обвязывать пакеты с бельем?

— А чем же прикажешь мне обвязывать пакеты с бельем?

— Половину того, что осталось, взял у меня Том, чтобы удить в канаве колюшек, хотя там и нет никаких колюшек.

— Старшему брату ты всегда должен уступать.

— Я и уступил. Осталось совсем немного, да из того еще папа взял половину для починки подтяжек, которые лопнули у него от смеха, когда случилась беда с автомобилем. А после понадобилось еще сестре взять две пятых оставшегося, чтобы завязать свои волосы узлом…

— Что же ты сделал с остальной бечевкой?

— С остальной? Остальной-то было всего-навсего 30 сантиметров. Вот и устраивай телефон из такого обрывка!

Какую же длину имела бечевка первоначально?

2

Снимая наколенники, спортсмен спросил веселого малого, считавшего очки:

— Сколько у меня, Билл?

— А вот сколько: часы только что пробили по одному разу на каждую пару ваших очков, — затараторил веселый малый. — А если бы у вас было вдвое более того, что у вас есть, то имелось бы у вас втрое против того, что пробьют часы при следующем бое.

Спрашивается: который был час в начале этого разговора?

3

В воскресенье был устроен в школе детский праздник под открытым небом. Пора было звать ребят к чаю. У палатки, где предполагалось устроить чаепитие, стоял пирожник и заведующий школой. Пирожник был полный мужчина, потому что, по роду своей профессии, питался главным образом остатками пирожных. Заведующий был высок и тонок.

— Да, — сказал пирожник, — будь у нас еще пяток стульев, я мог бы накормить всю компанию в три очереди, по равному числу ребят в каждой. Надо будет поискать, нельзя ли промыслить здесь пять стульев или табуретов.

— Не беспокойтесь, — ответил заведующий, — я распределю их на четыре очереди, в каждой поровну.

— О, тогда на каждую партию придется еще по три лишних стула.

Сколько было детей и сколько стульев?

4

— Зайдите ко мне завтра днем на чашку чая, — сказал старый доктор своему молодому знакомому.

— Благодарю вас. Я выйду в три часа. Может быть, и вы надумаете прогуляться, так выходите в то же время. Встретимся на полпути.

— Вы забываете, что я старик, шагаю в час всего только 3 километра, а вы, молодой человек, проходите, при самом медленном шаге, 4 километра в час. Не грешно бы дать мне немного вперед.

— Справедливо. Так как я прохожу больше вас на 1 километр в час, то, чтобы уравнять нас, я и дам вам этот километр, т. е. выйду на четверть часа раньше. Достаточно?

— Даже очень мило с вашей стороны, — поспешил согласиться старик.

Молодой человек так и сделал: вышел из дому в три четверти третьего и шел со скоростью 4 километра в час. А доктор вышел ровно в три и делал по

3 километра в час. Когда они встретились, старик повернул обратно и направился домой вместе с молодым другом.

Только за чаем сообразил молодой человек, что с льготной четвертью часа вышло не совсем ладно. Он сказал доктору, что из-за этого ему придется в общем итоге пройти вдвое больше, чем доктору.

— Не вдвое, а вчетверо, — возразил доктор, и был прав. Как далеко от дома доктора до дома его молодого знакомого?

5

Возвратившись из театра, где ставили «Фауста», молодой бакалейщик плотно поужинал и лег спать. Возбуждение и переполненный желудок вызвали у него кошмар.

Приснилось ему, что он стоит за прилавком. На прилавке жестянка с чаем, весы и несколько листов оберточной бумаги. Гирь не было.

«Нечем отвешивать, — подумал бакалейщик. — Если забредет покупатель, придется его как-нибудь сплавить».

В ту же минуту появился Мефистофель в красном плаще, застегнутом огромной пряжкой.

— Отвесьте килограмм чаю! — грозно сказал он.

— Слушаюсь, сию минуту пришлем вам на дом… Славная погода нынче, не правда ли? Тепло не по сезону.

— Нечего зубы заговаривать! — рявкнул Мефистофель. — Отвешивайте!

— Простите великодушно… Удивительное происшествие… никогда раньше не случалось… Все наши гири сейчас только отправлены в поверку.

— Вот оно что, — сказал Мефистофель. — А как чашки ваших весов: обе протекают или хоть одна может удержать воду?

— Правая сделана ковшиком, и в нее можно налить воды граммов триста или даже побольше. Левая — совсем плоская.

— Вот и отлично, — сказал Мефистофель, вынимая из-под плаща бутылочку с водой. — В этой бутылочке (сколько она сама весит, я не знаю) ровно 300 граммов воды. Пряжка моего плаща весит 650 граммов. Берите бутылочку и пряжку и отвесьте мне ровно килограмм чаю. Килограмм чистого веса; бумага не в счет.

— Этого никак невозможно сделать, — начал было бакалейщик.

— Нет, возможно! — крикнул Мефистофель так грозно, что бакалейщик проснулся.

Когда он обдумал свой сон, ему стало ясно, что Мефистофель-то был прав: с 300 граммов воды и пряжкой в 650 граммов совсем нетрудно отвесить в точности 1 килограмм чаю.

Каким образом?

6

Старый Осип явился на базар с арбузами и начал торговать. Арбузы были как на подбор все одинаковы.

Первый покупатель взял несколько арбузов, за которые торговец спросил по 36 копеек за штуку. Второй также купил несколько штук, за которые торговец взял по 32 копейки за штуку. Третьему покупка обошлась по 24 копейки штука.

Постовой милиционер, все время присматривавшийся к коммерческим оборотам торговца, также пожелал выступить в роли покупателя.

— Цена на арбузы, я вижу, падает, — сказал он. — У вас остался всего один последний арбуз. Что вы хотите за него?

— 48 копеек, — ответил торговец.

— Вот так раз! — с досадой воскликнул милиционер. — Почему это вы берете с меня дороже, чем со всех других?

— Я ни с кого не беру лишнего, — ответил торговец. — На всем базаре не найдете более добросовестного торговца. Для меня все покупатели равны, такое уж у меня правило. Хочу со всех нажить одинаково, много ли покупают или мало.

Сколько арбузов было у торговца?

7

Учительница задала двум ученицам один и тот же пример на умножение:


1 год 1 мес. 11/4 дня × 36.


Первая девочка умножила сначала на 9, а полученное произведение — на 4. Ответ получился правильный.

Вторая девочка умножила сначала на 4, а потом на 9 и тоже получила правильный ответ.

Учительница оценила обе работы одинаково. Если предполагать, что вторая девочка избрала свой путь решения вполне сознательно, то учительница поступила несправедливо, дав обоим ответам одинаковую оценку. Почему?

Добавление редактора Решения задач

1) После того как мать взяла половину, осталась 1/2, после заимствования старшего брата осталась 1/4, после отца 1/8, после сестры 1/8 × 3/5 = 3/40. Если 30 сантиметров составляет 3/40 первоначальной длины, то искомая длина равна 30:3/40 = 400 сантиметрам, или 4 метрам.

2) Пусть часы пробили х. Наличное число очков надо обозначить через 2х. Если их было вдвое больше, т. е. 4х, то это число превышало бы втрое число ударов часов при последующем бое, т. е. (х + 1). Следовательно, имеем уравнение 4x/3 = x + 1, откуда x = 3. Было 3 часа.

3) Обозначим число наличных стульев через х. Тогда число учеников можно выразить двояко: через 3 (х + 5) и через 4 (х — 3). Оба выражения должны быть равны, откуда имеем уравнение


3 (x + 5) = 4 (x — 3).


Решив его, находим x = 27. Следовательно, стульев было 27, а учеников 3 × (27 + 5) = 96.

4) Обозначим расстояние между домами через х. Молодой человек всего прошел 2х, а доктор вчетверо меньше, т. е. x/2—. До встречи доктор прошел половину пройденного им пути, т. е. x/4, а молодой человек — остальное, т. е. 3x/4. Свою часть пути доктор прошел в x/12 часов, а молодой человек — в 3x/16 часов, причем мы знаем, что он был в пути на 3/4 часа дольше, чем доктор. Имеем уравнение:


откуда × = 2,4 километра. Итак, от дома молодого человека до дома доктора — 2,4 километра.

5) Налив 300 граммов воды в чашку весов, отвешиваем этой «водяной гирей» сначала 300 граммов чаю. Затем, положив на одну чашку весов эти 300 граммов чаю, кладем на другую — пряжку, т. е. 650 граммов, и досыпаем на менее нагруженную чашу в отдельный пакет столько чаю, чтобы весы пришли в равновесие, — т. е. 350 г. Отвесив еще с помощью пряжки 650 г чаю, имеем 650 г + 350 г = 1000 г, т. е. 1 килограмм.

6) Обозначим себестоимость одного арбуза через х. Тогда чистая прибыль от продажи одного арбуза первой партии равна 36 — х, второй 32 — х, третьей 27 — х, наконец, последнего арбуза 48 — х. Так как чистая прибыль от продажи каждой партии одинакова, то число арбузов в первой партии должно равняться , во второй , в третьей .

Назад Дальше