— Встретятся и иные неудобства. Возьмешь, например, в руки первый том библиотеки. Смотришь: первая страница — пустая, вторая — пустая, третья — пустая и т. д. все 500 страниц. Это тот том, в котором шпация повторена миллион раз…
— В такой книге не может быть, по крайней мере, ничего абсурдного, — заметила хозяйка.
— Будем утешаться этим. Берем второй том: снова все пустые страницы, и только на последней, в самом низу, на месте миллионной литеры приютилось одинокое а. В третьем томе — опять та же картина, только а передвинуто на одно местечко вперед, а на последнем месте — шпация. Таким порядком буква а последовательно передвигается к началу, каждый раз на одно место, через длинный ряд из миллионов томов, пока в первом томе второго миллиона благополучно достигнет, наконец, первого места. А за этой буквой в столь увлекательном томе нет ничего — белые листы. Такая же история повторяется и с другими литерами в первой сотне миллионов наших томов, пока все сто литер не совершат своего одинокого странствования от конца тома к началу. Затем то же самое происходит с группою аа и с любыми двумя другими литерами во всевозможных комбинациях. Будет и такой том, где мы найдем одни только точки; другой — с одними лишь вопросительными знаками.
— Но эти бессодержательные тома можно ведь будет сразу же разыскать и отобрать, — сказал Буркель.
— Пожалуй. Гораздо хуже будет, если нападешь на том, по-видимому, вполне разумный. Хочешь, например, навести справку в «Фаусте» и берешь том с правильным началом. Но прочитав немного, находишь дальше что-нибудь в таком роде: «Фокус-покус, во — и больше ничего», или просто: «аааааа…» Либо следует дальше таблица логарифмов, неизвестно даже — верная или неверная. Ведь в библиотеке нашей будет не только все истинное, но и всякого рода нелепости. Заголовкам доверяться нельзя. Книга озаглавлена, например, «История Тридцатилетней войны», а далее следует: «Когда Блюхер при Фермопилах женился на дагомейской королеве»…
— О, это уж по моей части! — воскликнула племянница. — Такие тома я могла бы сочинить.
— Ну, в нашей библиотеке будут и твои сочинения, все, что ты когда-либо говорила, и все, что скажешь в будущем.
— Ах, тогда уж лучше не устраивай твоей библиотеки…
— Не бойся: эти сочинения твои появятся не за одной лишь твоей подписью, но и за подписью Гёте и вообще с обозначением всевозможных имен, какие только существуют на свете. А наш друг журналист найдет здесь за своей ответственной подписью статьи, которые нарушают все законы о печати, так что целой жизни не хватит, чтобы за них отсидеть. Здесь будет его книга, в которой после каждого предложения заявляется, что оно ложно, и другая его книга, в которой после тех же самых фраз следует клятвенное подтверждение их истинности.
— Ладно, — воскликнул Буркель со смехом. — Я так и знал, что ты меня подденешь. Нет, я не абонируюсь в библиотеке, где невозможно отличить истину от лжи, подлинное от фальшивого. Миллионы томов, притязающие на правдивое изложение истории Германии в XX веке, будут все противоречить один другому. Нет, благодарю покорно!
— А разве я говорил, что легко будет отыскивать в библиотеке все нужное? Я только утверждал, что можно в точности определить число томов нашей универсальной библиотеки, где наряду со всевозможными нелепостями будет также вся осмысленная литература, какая только может существовать.
— Ну, подсчитай же, наконец, сколько это составит томов, — сказала хозяйка. — Чистый листок бумаги, я вижу, скучает в твоих пальцах.
— Расчет так прост, что его можно выполнить и в уме. Как составляем мы нашу библиотеку? Помещаем сначала однократно каждую из сотни наших литер. Затем присоединяем к каждой из них каждую из ста литер, так что получаем сотню сотен групп из двух букв. Присоединив в третий раз каждую литеру, получаем 100 × 100 × 100 групп из трех знаков, и т. д. А так как мы должны заполнить миллион мест в томе, то будем иметь такое число томов, какое получится, если взять число 100 множителем миллион раз. Но 100 = 10 × 10; поэтому составится то же, что и от произведения двух миллионов десятков. Это, проще говоря, единица с двумя миллионами нулей. Записываю результат так: десять в двухмиллионной степени —
102 000 000
Профессор поднял руку с листком бумаги.[29]
— Да, вы, математики, умеете-таки упрощать свои записи, — сказала хозяйка. — Но напиши-ка это число полностью.
— О, лучше и не начинать; пришлось бы писать день и ночь две недели подряд, без передышки. Если бы его напечатать, оно заняло бы в длину четыре километра.
— Уф! — изумилась племянница. — Как же оно выговаривается?
— Для таких чисел и названий нет. Никакими средствами невозможно сделать его хоть сколько-нибудь наглядным, — настолько это множество огромно, хотя и безусловно конечно. Все, что мы могли бы назвать из области невообразимо больших чисел, исчезающе мало рядом с этим числовым чудовищем.
— А если бы мы выразили его в триллионах? — спросил Буркель.
— Триллион — число внушительное: единица с 18 нулями. Но если ты разделишь на него число наших томов, то от двух миллионов нулей отпадает 18. Останется единица с 1 999 982 нулями, — число столь же непостижимое, как и первое. Впрочем… — профессор сделал на листке бумаги какие-то выкладки.
— Я была права: без письменного вычисления не обойдется, — заметила его жена.
— Оно уже кончено. Могу теперь иллюстрировать наше число. Допустим, что каждый том имеет в толщину 2 сантиметра и все тома расставлены в один ряд. Какой длины, думаете вы, будет этот ряд?
Он с торжеством взирал на молчащих собеседников.
Последовало неожиданное заявление племянницы:
— Я знаю, какую длину займет ряд. Сказать?
— Конечно.
— Вдвое больше сантиметров, чем томов.
— Браво, браво! — подхватили кругом. — Точно и определенно.
— Да, — сказал профессор, — но попытаемся представить это наглядно. Вы знаете, что свет пробегает в секунду 300 000 километров, т. е. в год 10 биллионов километров, или триллион сантиметров. Если, значит, библиотекарь будет мчаться вдоль книжного ряда с быстротой света, то за два года он успеет миновать всего только один триллион томов. А чтобы обозреть таким манером всю библиотеку, понадобилось бы лет дважды единица с 1 999 982 нулями. Вы видите, что даже число лет, необходимое для обозрения библиотеки, столь же трудно себе представить, как и число самих томов. Здесь яснее всего сказывается полная бесполезность всяких попыток наглядно представить себе это число, хотя повторяю, оно и конечно.
Профессор хотел было уже отложить листок, когда Буркель сказал:
— Если собеседницы наши не запротестуют, я позволю себе задать еще только один вопрос. Мне кажется, что для придуманной тобою библиотеки не хватит места в целом мире.
— Это мы сейчас узнаем, — сказал профессор и снова взялся за карандаш. Сделав выкладки, он объявил:
— Если нашу библиотеку сложить так, чтобы каждые 1000 томов заняли один кубический метр, то целую Вселенную, до отдаленнейших туманностей, пришлось бы заполнить такое число раз, которое короче нашего числа томов всего лишь на 60 нулей.[30] Словом, я был прав: никакими средствами невозможно приблизиться к наглядному представлению этого исполинского числа.
Примечания редактора
Примечание 1. Что поражающее вычисление нередко фигурирует в книгах по теории вероятности. Французский математик Э. Борель в своей известной книге «Случай» придает ему следующую форму.
Предположим, что число знаков, употребляемых в письме, считая также знаки препинания и т. п., равняется 100; книга среднего размера содержит менее миллиона типографских знаков. Спрашивается: какова вероятность вынуть целую книгу, выбирая наудачу по одной букве?
Очевидно, вероятность того, чтобы вынутая буква была первой буквой книги, равна 1/100; она также равна 1/100 для того, чтобы вторая вынутая буква была второй буквой книги; а так как эти две вероятности независимы, то вероятность, что случатся оба события, равна
То же самое рассуждение можно повторить и для третьей буквы, для четвертой и т. д. Если их миллион, то вероятность, что случай даст именно их, равна произведению миллиона множителей, из которых каждый равен одной сотой; оно равно
Примечание 2. В этом расчете нет преувеличения: он вполне точен для тех представлений о размере Вселенной, которые господствовали в момент написания рассказа. Интересно повторить вычисление, исходя из современных представлений.
Согласно новейшим исследованиям астронома Кертиса, самые далекие объекты Вселенной — спиральные туманности — расположены от нас на расстоянии 10 миллионов световых лет. Световой год, т. е. путь, проходимый светом в течение года, равен, круглым числом, 10 биллионам километров, т. е. 1013 км. Следовательно, радиус видимой Вселенной мы можем считать равным
1013 × 107 = 1020 километрам,
или
1020 × 1000 = 1023 метрам.
Объем такого шара в куб. метрах равен
Считая по 1000 томов в куб. метре объема, узнаем, что Вселенная указанных размеров могла бы вместить только
4 = 1069 × 1000 = 4 × 1072 томов.
Следовательно, разделив все число томов «универсальной библиотеки» на это число, мы сократили бы ряд нулей на 73; разница между этим результатом и приведенным в рассказе, как видим, несущественна.
Примечание 3. Литературная машина
Поучительно рассмотреть придуманный Перельманом проект видоизменения идеи Лассвица,[31] сущность которого ясна из следующего воображаемого разговора.
— В том виде, какой Лассвиц придал своей идее «универсальной библиотеки», она, конечно, неосуществима. Слишком уж велик размах: перебирать все комбинации из миллиона типографских знаков! Неудивительно, что получаются сверхастрономические числа. Другое дело — если ограничиться гораздо более скромными рамками.
— Например?
— Например, удовольствовавшись комбинациями всего лишь из 1000 литер, среди которых сто различных. Вообразим механизм, который систематически составляет все сочетания, возможные при наборе отрывка в 1000 литер. С каждого сочетания делаются оттиски. Что же мы получим?
— Ясно что: всевозможные образчики вздора и бессмыслицы.
— Да, но в этом море бессмыслицы неизбежно должны оказаться и все осмысленные сочетания литер. Это тоже ясно. Значит, у нас в руках очутятся все литературные отрывки, какие мыслимо написать тысячью литерами. А именно: по отдельным страницам, по полустраницам будем мы иметь все, что когда-либо было написано и когда-либо будет написано в прозе и стихах на русском языке и на всех существующих и будущих языках (потому что иностранные слова можно ведь передавать буквами русского алфавита). Все романы и рассказы, все научные сочинения и доклады, все журнальные и газетные статьи и известия, все стихотворения, все разговоры, когда-либо веденные всеми населяющими земной шар людьми и всеми прежде жившими (в том числе и наш нынешний разговор с вами), все интимные тайны, когда-либо кем-либо кому-либо доверенные, и все, что еще предстоит придумать, высказать и написать людям будущих поколений по-русски и в переводе на все языки, — все это без исключения будет в наших оттисках.
— Бесспорно так. Не забывайте, однако, что мы будем иметь разрозненные, беспорядочно перемешанные отрывки. Придется их еще подобрать и сопоставить.
— Конечно. Будет немало работы по отыскиванию разрозненных частей. Но эта работа сторицей окупится ценностью ее результата. Подумайте: без гениев искусства и науки, чисто механическим путем, мы получим величайшие произведения мировой литературы и науки, овладеем всеми будущими открытиями и изобретениями.
— Как же это осуществить? Как устроить вашу «литературную машину»?
— Тут-то и сказывается огромное преимущество моего проекта перед проектом Лассвица. Уменьшив число литер в 1000 раз, заменив толстый том одной страничкой малого формата, я достиг технической осуществимости этой замечательной идеи. То, что немыслимо сделать при миллионе литер, вполне возможно выполнить для тысячи.
— А именно?
— Довольно просто. Вообразите шестеренку, на ободе которой помещаются 100 необходимых нам литер. Высота и ширина литеры, скажем для простоты, 2 миллиметра. Окружность шестеренки в 2 × 100, т. е. в 200 миллиметров, имеет диаметр меньше 7 сантиметров. Толщина шестеренки может быть пошире литеры — ну, пусть в 4 мм. Вообразите 1000 таких шестеренок, насаженных рядом на одну общую ось. Получите вал длиною в 4 метра и толщиною в 7 см. Шестеренки соединены между собою так, как это делается в нумераторах и в счетных машинах, а именно: при полном повороте первой шестеренки — вторая повертывается на одну литеру, при полном повороте второй — третья повертывается на одну литеру, и так до последней, 1000-й шестеренки. Валик покрывается типографской краской и делает оттиски на длинной 4-метровой бумажной полосе. Вот и устройство «литературной» машины. Как видите, просто и не очень громоздко.
— Как же она работает?
— Шестеренки приводятся во вращение, как я уже сказал, последовательно. Сначала начинает вращаться первая и дает на бумаге оттиски своих литер — это первые 100 «литературных произведений» из категории бессмысленных. Когда она обернется один раз, она вовлекает во вращение вторую шестеренку: та повертывается на одну литеру и остается в этом положении, пока первая продолжает вращаться; получите еще 100 оттисков, теперь уже из двух букв. После 100 таких оборотов вторая шестеренка повертывается еще на одну литеру, опять обе дают 100 новых оттисков, и т. д. Когда же и вторая сделает полный оборот, присоединяется третья шестеренка, и получаются всевозможные оттиски из трех литер. И так далее, пока не дойдет очередь до последней, 1000-й шестеренки. Вы понимаете, что когда эта 1000-я шестеренка сделает полный оборот, все возможные комбинации в 1000 литер будут исчерпаны, и останется лишь работа по разборке оттисков.
— Много ли времени потребует вся работа вашей машины?
— Времени, конечно, порядочно. Но простота конструкции моей машины дает возможность значительно сократить необходимое время. Ведь работа машины сводится к вращению небольших шестерен, а скорость вращения можно технически довести до весьма высокой степени. Турбина Лаваля делает 30 000 оборотов в минуту. Почему бы и «литературную» машину не пустить таким темпом? Словом, как видите, у меня идея Лассвица получает конструктивное воплощение и притом в довольно простой форме — длинного ряда шестеренок, насаженных на одну ось и вращаемых с большою (но технически осуществимою) скоростью.
_____________________________________
Что мы должны думать об этом проекте «литературной» машины?
То, что он так же несбыточен, как и первоначальный проект Лассвица. Соорудить и пустить в ход эту «литературную» машину, пожалуй, вполне возможно, но дождаться конца ее работы человечество не сможет. Солнце погаснет, прежде чем последняя шестеренка закончит свое вращение. Действительно, при 30 000 оборотов в секунду
Надо ли продолжать? Если 12-я шестеренка начнет вращаться только через двести миллионов лет, то когда дойдет очередь до 1000-й? Нетрудно вычислить. Число минут выразится числом
— числом, в котором 1775 цифр. Во всей Вселенной не хватит материи, чтобы дать материал для всех оттисков, число которых выражается 1779 цифрами. Ведь во Вселенной, по подсчетам специалистов (де-Ситера), «всего» 1077 электронов, и даже если бы каждый оттиск состоял из одного электрона, можно было бы отпечатать лишь ничтожную долю всей продукции «литературной» машины. Перерабатывать старые оттиски вновь на бумагу? Но допуская даже при этом ничтожнейшую потерю материи в 1-биллионную долю, мы должны были бы иметь — считая снова по электрону на оттиск — число оттисков из 1767 цифр, а электронов у нас имеется число всего из 78 цифр…
Можно возразить, пожалуй, что незачем ждать окончания работы «литературной» машины: ведь шедевры литературы и замечательные открытия могут случайно оказаться среди первого миллиона оттисков. При невообразимо огромном числе всех возможных сочетаний эта вероятность еще более ничтожна, чем вероятность случайно наткнуться на один определенный электрон среди всех электронов Вселенной. Число электронов во Вселенной неизмеримо меньше, чем общее число возможных оттисков нашей машины.
Но пусть даже осуществилось несбыточное, пусть случилось чудо, и в наших руках имеется сообщение о научном открытии, появившееся из-под машины без участия творческой мысли. Сможем ли мы этим открытием воспользоваться?
Нет, мы даже не сможем признать этого открытия. Ведь у нас не будет критерия, который позволил бы нам отличить истинное открытие от многих мнимых, столь же авторитетно возвещаемых в процессе работы нашей машины. Пусть, в самом деле, машина дала нам отчет о превращении ртути в золото. Наряду с правильным описанием этого открытия будет столько же шансов иметь множество неправильных его описаний, а кроме того, описаний и таких невозможных процессов, как превращение меди в золото, марганца в золото, кальция в золото и т. д. и т. д. Оттиск, утверждающий, что превращение ртути в золото достигается при высокой температуре, ничем не отличается от оттиска, предписывающего прибегнуть к низкой температуре, причем могут существовать варианты оттисков с указанием всех температур от минус 273° до бесконечности. С равным успехом могут появиться из-под машины указания на необходимость пользоваться высоким давлением (тысячи вариантов), электризацией (опять тысячи вариантов), разными кислотами (снова тысячи и тысячи вариантов) и т. п.