Суперобъекты. Звезды размером с город - Попов Сергей Александрович "skein" 6 стр.


Кроме урка-процесса нейтрино могут рождаться в результате взаимодействия частиц без превращений (например, при рассеянии частиц друг на друге). Плюс – есть еще одна экзотическая возможность.

Недра нейтронных звезд сверхтекучи. И это несмотря на температуру в сотни миллионов градусов! Просто плотность настолько высока, что даже при столь высокой температуре вещество считается холодным. То есть тепловая энергия частиц несущественна для их основных взаимодействий. Чтобы протоны или нейтроны стали сверхтекучими, необходимо, чтобы они образовывали пары – из фермионов (частиц с полуцелым спином, как у протонов и нейтронов) получаются бозоны (частицы с целым спином). На тепловую эволюцию это влияет двумя способами. Во-первых, наличие сверхтекучести подавляет прямой урка-процесс. Таким образом, сверхтекучесть помогает сохранить тепло. Однако пары могут рождаться и разрушаться. А при этом испускаются нейтрино. Так что, во-вторых, сверхтекучесть запускает новый канал остывания. Правда, более слабый.

Тепловая эволюция зависит от свойств недр: состава, плотности и т. д. Поэтому изучение зависимости температуры от возраста нейтронных звезд помогает продвинуться в понимании устройства их недр. Кроме того, измерение температуры дает независимую оценку возраста, если мы доверяем расчетам остывания. Как правило, им можно верить при возрастах от сотен до сотен тысяч лет при условии, что звезда довольно горячая (не запустился прямой урка-процесс) и не было дополнительного подогрева.

Откуда у нейтронных звезд «грелка»? Обсуждались самые разные идеи. Но если нет аккреции, то по всей видимости лишь одна из версий представляется действительно очень важной для одиночных нейтронных звезд. Это затухание магнитного поля.

Магнитные поля порождаются электрическими токами, и они уменьшаются со временем. Часть энергии токов идет на нагрев коры. Если поля были достаточно сильными и затухают быстро (а именно это происходит в магнитарах), то нагрев будет заметным. Действительно, магнитары отличает довольно высокая тепловая рентгеновская светимость – до сотни светимостей Солнца. Они заметно горячее своих кузенов, не имеющих столь сильных магнитных полей. Часть энергии, выделившейся при затухании магнитного поля (токов), переносится внутрь и там излучается наружу с помощью нейтрино.

Для нейтронных звезд в двойных системах есть другая «грелка». Это пикноядерные реакции. Если нейтронную звезду оставить в покое, то ее составные элементы придут в равновесное состояние. В том числе и кора. Но мощная аккреция выводит кору из равновесия. Падающее сверху вещество давит на кору. В итоге она начинает погружаться в более глубокие и плотные слои. Состав опустившегося вещества коры теперь не соответствует той плотности, в которой оно оказалось. Поэтому начнутся реакции превращения элементов. Они могут приводить к достаточно заметному выделению тепла. И это наблюдается. Известны источники в двойных системах, где аккреция иногда выключается. Удается увидеть, как меняется температура поверхности компактного объекта между эпизодами аккреции. Сравнение данных наблюдений с расчетами говорит о том, что для поддержания температуры необходимы пикноядерные реакции в коре. Это снова возвращает нас к вопросу о свойствах недр нейтронных звезд.

IV. Недра нейтронных звезд

Экстремальное состояние вещества

Если мы хотим изучать очень сильные токи или очень сильные магнитные поля, то нам нужно проверять предсказания электродинамики для этих случаев, и единственный объект, где это можно делать, – нейтронные звезды. Хотим иметь хорошее понимание гравитации, например, чтобы у нас спутники по Солнечной системе летали так, как надо? Опять-таки, нам надо проверять в целом эту теорию гравитации, искать какие-то экстремальные объекты – это снова будут те же нейтронные звезды или черные дыры. То же самое касается ядерной физики. Мы хотим понимать, как взаимодействуют друг с другом протоны, нейтроны и другие частицы, как они превращаются друг в друга при разных условиях. В том числе хотим знать, как ведет себя вещество при очень высокой плотности.

На Земле в естественных условиях самая высокая плотность – плотность атомного ядра. Мы все помним, что атомы – это такие эфемерные образования, потому что хотя атом сам не маленький (его размер около 0,1 нанометра), но относительно большой он лишь за счет того, что легкие электроны (в тысячу с лишним раз легче, чем протон или нейтрон) крутятся вокруг ядра на расстоянии, намного большем его размера (в десятки тысяч раз меньше радиуса электронной орбиты). При этом практически вся масса атома заключена в крошечном ядрышке.

Заставить вещество сжаться еще сильнее, чем оно уже спрессовано в атомных ядрах, в земных условиях очень трудно, потому что мы сталкиваемся с сильным ядерным взаимодействием. Если на расстояниях бо́льших примерно 0,8 ферми (ферми – это длина, равная 10–15 метра) ядерное взаимодействие приводит к притяжению нуклонов (частиц, входящих в атомное ядро, т. е. протонов и нейтронов), то на меньших расстояниях возникает очень сильное отталкивание. Это очень мощное взаимодействие (в 1038 раз сильнее гравитационного в масштабе атомного ядра), с ним очень тяжело бороться. Единственный способ на Земле как-то поджать ядро – разогнать, например, два ядра на ускорителе и столкнуть их. Но при этом у вас получится горячее вещество. Ядра летят с огромной энергией, в момент столкновения она разом выделяется, и получается облако кварк-глюонной плазмы. И это для каких-то целей хорошо, но для изучения того, как ведет себя холодное плотное вещество, – плохо. Вы его не получаете или получаете на ничтожно короткое время со всякими «но». Кроме того, обычные ядра содержат примерно поровну протонов и нейтронов – это так называемое симметричное вещество. А нам важно выяснить, что будет при нарушении симметрии – если нейтронов в несколько раз больше, чем протонов. И единственное место, где можно, пусть и косвенно, изучать несимметричное холодное вещество при высокой плотности, – это недра нейтронных звезд.

Из чего сделаны нейтронные звезды

Оценки показывают, что в центре нейтронной звезды плотность может быть раз в десять больше, чем у атомного ядра. И там могут происходить очень интересные превращения. Во-первых, вещество состоит из протонов и нейтронов, при этом протонов и нейтронов примерно поровну. Но при сжатии вещества в нем становится больше нейтронов. Поначалу ядра обогащаются «лишними» нейтронами. Затем возникают нейтронные капли, и наконец, ядра исчезают, и остается смесь протонов и нейтронов. Этот процесс сопровождается появлением так называемой «ядерной пасты», поскольку конфигурации ядерного вещества и нейтронов напоминают разные «макаронные изделия». То длинные спагетти, то плоские листы для лазаньи. В некоторых моделях, в центральных частях нейтронных звезд нейтронов примерно в 10 раз больше, чем протонов. Собственно, поэтому они и называются нейтронными.

Но могут происходить и всякие другие хитрые превращения.

Может быть, энергетически выгодным является превращение нейтронов и протонов в другие частицы. Есть, соответственно, модели, в которых возникают гиперонные звезды (гипероны – элементарные частицы, содержащие странный – s – кварк), есть звезды, где в центральных частях возникают конденсаты других частиц – пионов, например, или также содержащий странный кварк каонов, которые в обычных условиях являются экзотикой.


Таблица частиц Стандартной модели. В ней есть шесть кварков. Каждый из них может иметь один из трех «цветов», и у каждого есть антикварк. Обычное вещество состоит из протонов и нейтронов, которые «сделаны» из двух типов самых легких кварков. В недрах компактных объектов вещество может переходить в новое состояние, где также становится важным третий по массе – так называемые странный, – кварк.


Есть еще более экзотические модели – это модели кварковых, или странных, звезд. Мы помним, что протоны и нейтроны состоят из трех маленьких частиц – кварков. И они обладают любопытной особенностью. Получить отдельный кварк и изучить его «лицом к лицу», невозможно. Если мы пытаемся выдрать кварк, например, из протона или какой-то другой частицы, понадобится такое количество энергии, которого достаточно для того, чтобы родить пару из кварка и антикварка. Новорожденный кварк войдет в состав той частицы, которую мы пытались разделить. А антикварк вместе с полученным нами кварком образует новую, составную частицу (это будет какой-нибудь мезон). То есть мы «вытянули» отнюдь не отдельный кварк. Это явление называют конфайнментом – кварки «заперты» в частицах, которые называют адронами.

Есть еще более экзотические модели – это модели кварковых, или странных, звезд. Мы помним, что протоны и нейтроны состоят из трех маленьких частиц – кварков. И они обладают любопытной особенностью. Получить отдельный кварк и изучить его «лицом к лицу», невозможно. Если мы пытаемся выдрать кварк, например, из протона или какой-то другой частицы, понадобится такое количество энергии, которого достаточно для того, чтобы родить пару из кварка и антикварка. Новорожденный кварк войдет в состав той частицы, которую мы пытались разделить. А антикварк вместе с полученным нами кварком образует новую, составную частицу (это будет какой-нибудь мезон). То есть мы «вытянули» отнюдь не отдельный кварк. Это явление называют конфайнментом – кварки «заперты» в частицах, которые называют адронами.

Однако если речь идет о недрах компактной звезды, то из-за большой гравитации там создается настолько высокая плотность, что в этой области кварки становятся свободными. Говорят, что произошел деконфайнмент. Такую идею предложили в 1965 году (т. е. еще до открытия пульсаров!) Дмитрий Иваненко и Дмитрий Курдгелаидзе, практически сразу же после появления самой гипотезы о кварковом строении вещества.

При деконфайнменте вещество будет состоять уже не из протонов, нейтронов, гиперонов или еще каких-то частиц, а именно из свободных кварков, эдакой кварковой плазмы в некотором смысле. Это чрезвычайно интересно, если, конечно, такой сценарий реализуется в природе – пока кварковое вещество остается гипотезой. И снова единственное место, где это действительно можно было бы достаточно надежно изучать, – это недра нейтронных звезд.

Странными же эти звезды называют потому, что при высокой плотности вдобавок к обычным верхним и нижним – up (u) и down (d) кваркам, добавляется третий – странный – strange (s). S-кварк входит в состав многих элементарных частиц, например гиперонов. Во многих моделях кварковых звезд s-кварк важен для их устойчивости. Но иногда теоретикам удается обойтись и без него. Совсем недавно наличие странных кварков в плотном веществе начали учитывать при моделировании взрывов сверхновых. Это помогает увеличить светимость испускаемых нейтрино, их энергию, что важно для того, чтобы сверхновая все-таки взорвалась. Кроме того, коллапс может быть двухстадийным, когда вначале образуется нейтронная звезда, а потом – кварковая. Это приводит к дополнительному энерговыделению и также помогает взрыву.


Схема строения протона и нейтрона. Каждая из этих частиц состоит из трех кварков разных цветов (таким образом, сами протоны и нейтроны «бесцветны»). Примечательно, что масса покоя трех кварков намного меньше масс протона или нейтрона. Большие массы этих частиц во многом определяются взаимодействиями между кварками.


Вращение и состав

Вращение нейтронной звезды влияет на ее состав, если период достаточно короткий. Связано это с тем, что при быстром вращении внутри любого объекта начинает меняться плотность. Кроме того, объект сплющивается вдоль полюсов и вытягивается в экваториальной плоскости. При периоде, называемом предельным, вещество начинает истекать с экватора[10].



Изменение формы объекта при увеличении скорости вращения. Раскручиваясь, объект уплощается. Наконец, из-за очень сильного вращения может начаться истечение с экватора (если объект газовый) или же объект разделится вследствие неустойчивости (если он жидкий). В первом случае «лишний» момент импульса будет унесен оттекающим веществом. Во втором – перейдет в орбитальный момент.

Мы уже упоминали, что быстрое вращение бывает настолько важным для судьбы нейтронной звезды, что может даже предотвратить коллапс в черную дыру. Для этого необходима скорость, близкая к предельной, т. е. период должен быть около одной миллисекунды или даже меньше. При более мягких условиях (период вращения порядка нескольких миллисекунд) вращение может определять фазовые переходы внутри компактного объекта. То есть взаимные превращения частиц и строение звезды.

Например, пусть реализуется такое уравнение состояния, что существует критическая плотность, ниже которой вещество состоит в основном из нейтронов, протонов и мюонов, а при более высокой – происходит деконфайнмент. То есть появляется кварковое вещество. Если мы забудем про вращение, то плотность в центре (где, скорее всего, переход произойдет впервые, так как плотность там выше всего) зависит только от массы звезды. Вращение, близкое к предельному, меняет эту естественную картину. Теперь плотность зависит еще и от периода, и его значение будет определять состав недр.

Замедление вращения может приводить к тому, что в звезде произойдет фазовый переход. Например, звезда в двойной системе аккрецировала вещество со второго компонента. В результате росла масса, а магнитное поле уменьшалось – образовался миллисекундный рентгеновский пульсар. Однако, несмотря на рост массы, фазовый переход не произошел, так как объект раскрутился. По окончании аккреции нейтронная звезда становится миллисекундным радиопульсаром. Теперь она может потихоньку замедляться. В какой-то момент вращение уменьшится настолько, что плотность в центре подрастет, доберется до критического значения и начнется превращение вещества.

Как правило, после фазового перехода образуется более компактная конфигурация – нейтронная звезда (которая постепенно перестает быть такой уж нейтронной) поджимается, а потому немного раскручивается. На рубеже XX и XXI вв. несколько групп исследователей пытались обнаружить следы фазовых превращений в недрах компактных объектов, изучая их распределение по периодам вращения, но никаких надежных результатов получено не было. Нужны другие способы изучения недр нейтронных звезд.

Измерение температуры как способ изучения недр

Основные проблемы в изучении нейтронных звезд состоят в том, что, во-первых, они находятся далеко от нас. А во-вторых, если речь идет о недрах, то нам нужно, наблюдая поверхность или какие-то процессы снаружи нейтронной звезды, понять, как она устроена внутри. Здесь возникает типичная астрономическая задача: эксперимент невозможен, можно только наблюдать. И ученые пытаются с этой проблемой справиться.

Например, можно наблюдать остывающие нейтронные звезды. Это похоже на то, как врачи раньше, не имея продвинутых способов заглянуть внутрь пациента, ставили диагноз, измеряя температуру тела. Нейтронные звезды рождаются горячими, с температурой поверхности несколько миллионов градусов. Новорожденных, с возрастом порядка нескольких лет или десятков лет, компактных объектов мы пока не видим. Самые молодые из известных имеют возраст порядка нескольких сотен лет. Это соответствует температуре поверхности около миллиона градусов. Мы видим эту горячую поверхность, т. е. мы видим такие нейтронные звезды. Мы, возможно, даже наблюдаем сейчас совершенно уникальную вещь: как звезда остывает буквально у нас на глазах. За несколько лет наблюдений у одной из нейтронных звезд – это центральный компактный объект в остатке сверхновой Кассиопея А – удалось заметить, как температура упала на несколько процентов. (Тут, правда, идут споры: видим ли. И неудивительно, так как поймать эффект трудно.) И это дает нам информацию, что происходит в недрах, потому что нейтронная звезда, как мы уже говорили, остывает изнутри, а не с поверхности.

Итак, напомним: обычно тела остывают снаружи и, как правило, горячий объект на поверхности холоднее, чем внутри. У нейтронных звезд ситуация немножечко более хитрая. Хотя, исключая короткий период младенчества, формально они все равно горячее в центре, но энергия уносится не столько фотонами с поверхности, сколько нейтрино, вылетающими прямо из недр.


Рентгеновское изображение остатка сверхновой Puppis A. В нем находится остывающая нейтронная звезда, относящаяся к классу центральных компактных объектов.


Нейтронная звезда, кроме первой минуты своей жизни, прозрачна для нейтрино, и поэтому остывание первые сотни тысяч лет (иногда меньше – зависит от массы объекта) идет в основном изнутри, а тепло течет из внешних слоев внутрь, оттуда энергия излучается в виде нейтрино. Поэтому, наблюдая температуру поверхности, мы косвенно получаем информацию о том, что происходит в глубине.

В разных процессах с участием разных частиц темп излучения нейтрино должен быть различным. Поэтому кварковые звезды должны остывать не так, как звезды, состоящие из протонов и нейтронов; гиперонные звезды – не так, как объекты с большой долей пионного конденсата, и т. д. Значит, при той же массе и том же возрасте компактные объекты разного состава (и строения) будут иметь разную температуру поверхности. Сравнивая данные наблюдений с теоретическими расчетами остывания разных типов компактных объектов, можно надеяться продвинуться в изучении тайны их недр.

Назад Дальше