О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Сотой 10 стр.


Атомистическое видение материи не было повсеместно признано в Древнем мире. В конце концов, никаких доказательств существования таких невидимых элементов не было. Их нельзя было увидеть. Аристотель, например, не верил в идею фундаментальных атомов. Он полагал, что стихии по природе своей непрерывны, так что мою игральную кость теоретически можно делить на все меньшие и меньшие части. Он считал огонь, землю, воздух и воду элементарными в том смысле, что их нельзя разделить на «тела иной формы». Сколько бы мы их ни делили, мы всегда получаем воду или воздух. Вода в стакане представляется человеческому глазу непрерывной структурой, которую теоретически можно делить до бесконечности. Кусок резины можно плавно растянуть так, что он будет казаться непрерывным. Так было подготовлено поле битвы между непрерывной и дискретной моделями материи. Между глиссандо и дискретными нотами музыкальной гаммы. Между виолончелью и трубой.

Интересно отметить, что именно пифагорейцам приписывается открытие, которое поставило атомистическое видение материи под угрозу и на долгие годы изменило ситуацию в пользу веры в возможность бесконечного деления материи.

Числа на грани

Если провести на листе бумаги две линии, то с атомистической точки зрения каждая из линий будет состоять из определенного числа неделимых атомов и, следовательно, их длины будут пропорциональны некоторым целым числам, соответствующим количествам атомов, их составляющих. Но оказалось, что такой строгий порядок не вполне соответствует положению вещей. Более того, именно теорема о прямоугольных треугольниках самого Пифагора показала, что мир геометрии способен порождать линии, отношение длин которых не может быть выражено простыми дробями.

В размерах моей игральной кости уже таится некоторое затруднение для этого атомистического воззрения на природу. Возьмем два ребра кубика, расположенные под прямым углом друг к другу. Их длины равны. Рассмотрим диагональ, проведенную по грани кубика и завершающую треугольник, образованный вместе с двумя ребрами одинаковой длины. Каково отношение длины этой диагонали к длинам более коротких сторон треугольника?

Как гласит теорема Пифагора о прямоугольном треугольнике, квадрат длины такой диагонали (гипотенузы) равен сумме квадратов длин двух коротких сторон (катетов). Если считать длину ребра кубика равной 1, то, по теореме Пифагора, длина диагонали грани такого кубика равна числу, квадрат которого равен 2. Что же это за число?

Задача вычисления этой длины увлекала еще вавилонян. Оценку этой длины можно найти на хранящейся в Йельском университете табличке, которую датируют старовавилонским периодом (1800–1600 гг. до н. э.). Используя шестидесятеричную систему (т. е. систему счисления по основанию 60), вавилоняне получили следующий результат:

которому при десятичной записи соответствует число 1,41421296296…, причем группа «296» повторяется до бесконечности. Собственно, любая дробь, будучи записана в десятичной системе, с какого-то момента начинает повторяться. Это вавилонское вычисление было замечательным достижением. Оно соответствует точному результату до шестого знака после запятой. Однако квадрат этой дроби оказывается чуть меньше 2. Открытие древних греков состояло в том, что, как бы ни старались вавилонские писцы, их дроби, возведенные в квадрат, никогда не могли быть точно равны 2.

Открытие неизбежности такой неудачи вавилонских математиков приписывают одному из последователей Пифагора по имени Гиппас. Он доказал, что длина диагонали грани моей игральной кости в принципе не может быть выражена в виде дроби.

Из теоремы Пифагора о прямоугольном треугольнике следует, что длина гипотенузы равна произведению длины катета на квадратный корень из 2. Но Гиппас смог доказать, что дроби, квадрат которой был бы точно равен 2, не существует. Доказательство использует один из классических приемов, имеющихся в арсенале математика, – доказательство от противного. Гиппас предположил сначала, что существует такая дробь, квадрат которой равен 2. При помощи некоторых ловких преобразований можно показать, что из этой посылки всегда следует противоречивый вывод о существовании числа одновременно четного и нечетного. Единственный способ разрешения этого противоречия состоит в признании ложности исходного предположения: существование дроби, квадрат которой был бы равен 2, невозможно.

Говорят, что его товарищи-пифагорейцы были приведены в смятение вестью о том, что их прекрасные прямоугольные треугольники могут порождать такие негармоничные длины. Члены секты поклялись молчать об этом, но, когда Гиппас обнародовал свои результаты, его, как рассказывают, утопили в море за разглашение факта существования в физическом мире подобной дисгармонии. Однако заткнуть рот этим новым числам, называемым иррациональными, поскольку они не являются отношениями целых чисел[34], было сложнее.

Иррациональные длины в кубе

Мне конечно же кажется, что такая длина существует. Я могу увидеть ее на линейке, приложенной к длинной стороне треугольника. Она равна расстоянию между двумя противоположными углами любой грани моей кости. И тем не менее, сколько бы я ни пытался, я не могу найти закономерность этого бесконечного десятичного числа. Оно начинается с 1,414213562… и продолжается до бесконечности, никогда не повторяясь.

Иррациональный восторг

Открытое древними греками существование длин, которые нельзя выразить простым отношением целых чисел, заставило математиков того времени создать новую математику, математику иррациональных чисел, которая позволила бы действительно измерить Вселенную. Иррациональными оказались и другие базовые длины, например π, длина окружности единичного диаметра, – они тоже не были равны отношениям целых чисел. Хотя иррациональность квадратного корня из 2 была известна древним грекам еще 2000 лет назад, только в XVIII в. швейцарский математик Иоганн Генрих Ламберт смог доказать, что число π тоже не может быть выражено в виде отношения двух целых чисел.

Несмотря на мое отвращение к тому, чего мы знать не можем, один из определяющих моментов, возбудивших во мне любовь к математике, наступил, когда я прочитал о числах, которые не могут быть выражены простым отношением целых чисел. В том же году, когда учитель музыки познакомил меня с трубой, лежавшей в шкафу, учитель математики познакомил меня с доказательством иррациональности квадратного корня из 2. Это доказательство содержалось в одной из книг, которые учитель посоветовал мне прочесть, пытаясь разжечь во мне математическое пламя. И это ему удалось. Я был поражен тем, что при помощи конечного логического рассуждения можно доказать, что размер, подобный длине диагонали квадрата, может быть выражен лишь числом с бесконечным количеством знаков. А если записать такую длину невозможно, мне нужно хотя бы понять, почему это число нельзя познать.

С тех пор как я школьником прочитал это доказательство, я узнал о других методах исследования иррациональных чисел, так что, может быть, эти числа все-таки познаваемы. Существуют бесконечные выражения с регулярной структурой, позволяющие сделать такие числа менее таинственными. Например,

Открытие таких выражений выводит иррациональные числа в область известного. Дробь представляет собой число, которое при десятичной записи повторяется начиная с некоторой точки. Нельзя ли рассматривать такие выражения как структуру, не слишком отличную от повторяющейся группы десятичного представления дроби? Наличие такой повторяющейся группы означает, что существуют два числа, отношение которых дает значение данного числа, тогда как в случае 2 и π я вынужден использовать для выражения этих длин бесконечное число чисел. Вопрос о том, обязательно ли известное должно быть конечным, будет постоянно преследовать меня в течение всего моего путешествия к границам неизвестного.

Разумеется, для любого практического применения таких чисел мне, вероятно, хватит и приближения, выраженного дробью. Большинство инженеров вполне успешно использует вместо числа π его оценку 22/7, которую Архимед получил путем приближения окружности 96-сторонним правильным многоугольником. Собственно говоря, чтобы вычислить длину окружности размером с наблюдаемую часть Вселенной с точностью, сравнимой с размерами атома водорода, достаточно знать всего 39 знаков π. Существует даже формула, позволяющая узнать значение миллионного знака π без вычисления всех предшествующих ему знаков. Не то чтобы мне так уж хотелось их знать. Но такая формула позволяет достичь лишь конечного знания числа, полное познание которого требует бесконечности.

Из открытия таких чисел, по-видимому, следовала бесконечная делимость пространства. Только бесконечное деление пространства может позволить мне точно измерить размеры моего простого кубика. В результате этого открытия мнение Аристотеля о непрерывности материи оставалось на Западе господствующим вплоть до эпохи Возрождения.

Гармония маленьких сфер

Благодаря научным открытиям, сделанным поколением Ньютона и после него, произошел новый разворот в сторону мнения о том, что Вселенная построена из неких элементарных кирпичиков. Пожалуй, первым в аристотелевском видении материи, господствовавшем почти 200 лет, усомнился современник Ньютона Роберт Бойль. В своей книге «Химик-скептик» Бойль попытался опровергнуть идею о том, что материя составлена из четырех «стихий» – огня, земли, воздуха и воды. Такое описание, возможно, хорошо отражает состояния материи, но не ее составляющие.

Взамен он предложил новый список химических элементов. Более того, он высказал утверждение, по тем временам довольно сильно попахивавшее ересью. Он считал, что такие элементы представляют собой миниатюрные тела, или атомы, различающиеся лишь «размером, видом, текстурой и движением». С точки зрения теологии такая идея казалась опасной; Церковь, всегда предпочитавшая воззрения Аристотеля, увидела в ней признаки опасно материалистического видения мира. Кое-кто объявил Бойля Галилеем химической революции.

Хотя Ньютон был согласен с тезисом Бойля о том, что материальный мир состоит из неделимых элементов, те математические инструменты, которые Ньютон разрабатывал одновременно с работой Бойля, в сильной степени основывались на бесконечной делимости времени и пространства. Математический анализ, позволяющий сделать моментальный снимок непрерывного потока развития Вселенной, имеет смысл только в качестве процесса, в котором пространство делят на все меньшие и меньшие фрагменты и интерпретируют то, что происходит в пределе бесконечного уменьшения таких фрагментов.

Вопрос о бесконечной делимости времени и пространства возбуждал философские дискуссии еще со времен древнегреческого мыслителя Зенона Элейского, сформулировавшего парадоксы, которые, по-видимому, следовали из такого деления пространства. Например, Зенон утверждал, что стрела никогда не сможет долететь до цели, потому что она должна сначала преодолеть половину расстояния до цели, потом половину оставшегося расстояния, потом половину вновь оставшегося расстояния и т. д., так что достижение цели потребовало бы бесконечного числа таких перемещений. Успех ньютоновского математического анализа вновь возродил обсуждение этой проблемы. Некоторые все еще считали такую бесконечную делимость почти что ересью.

Епископ Беркли посвятил целый трактат под названием «Аналитик» доказательству абсурдности попыток деления на ноль. Его направленность была ясно выражена в подзаголовке «Рассуждение, адресованное неверующему математику»[35].

Хотя другие неверующие математики быстро осознали могущество математического анализа, остальные открытия самого Ньютона подтверждали предположение о том, что, даже если пространство и время можно делить бесконечно, к материи это не относится. Его идея мира, составленного из неделимой материи, со временем стала господствующей теорией устройства Вселенной. Но в тот момент она все еще оставалась просто одной из теорий, мало чем подтвержденной.

Теория сил, воздействующих на крупные объекты – будь то планеты или яблоки, – была столь успешной, что Ньютон предположил, что раз эти принципы верны для чрезвычайно крупных объектов и объектов среднего размера, то они должны быть применимы и к чрезвычайно малому. С чего бы законам движения, управляющим поведением Вселенной, изменяться по мере увеличения масштаба моей игральной кости? Успешность применения математического анализа к движению планет была основана на их представлении в виде точечных масс, расположенных в центрах тяжести соответствующих тел. Может быть, и вся материя состоит из частиц, подобных миниатюрным планетам, поведение которых определяется законами движения. В своих «Началах» Ньютон предположил, что применение его идей к таким отдельным частицам позволило бы предсказать поведение всех материальных объектов.

Ньютоновская теория света также способствовала распространению убеждения в том, что атомистическое воззрение является наилучшим способом понимания мира. Представление света в виде частиц казалось простейшим путем к описанию явлений, которые Ньютон изложил в своей «Оптике». Казалось, что отражение света имитирует поведение бильярдного шара, отскакивающего от бортов стола. Но с научной точки зрения никаких эмпирических свидетельств правоты такой теории Вселенной, состоящей из отдельных частиц, не было.

Даже при помощи микроскопов, появившихся в XVII в., нельзя было увидеть ничего, подтверждающего эту атомистическую модель. Хотя какие-то дискретные объекты и были видны, доказать их неделимость было невозможно. Тем не менее об изменении господствующего мнения можно судить по распространенности атомистического воззрения в популярной культуре той эпохи. В «Оде святой Цецилии» Николаса Брейди, положенной на музыку в 1691 г. Генри Пёрселлом, упоминаются «зерна материи»:

Наиболее убедительные доказательства атомарного строения вещества были получены веком позже из экспериментов, которые показывали, как в сочетаниях материи образуются новые вещества. И сочетания эти были полны совершенной гармонии, в точном соответствии с образами Брейди.

Атомная алгебра

Первое реальное экспериментальное подтверждение представления о материи, состоящей из отдельных атомов, было получено в начале XIX в. в работах английского химика Джона Дальтона. Он обнаружил, что химические соединения, по-видимому, состоят из веществ, содержащихся в них в целочисленных пропорциях, и это революционное открытие привело ко всеобщему научному признанию идеи о том, что такие вещества действительно существуют в виде дискретных порций.

Например: «Элементы кислорода могут сочетаться с определенной порцией газообразного азота или с удвоенной его порцией, но не с промежуточным количеством». Разумеется, одно это обстоятельство не доказывало дискретности материи и даже не было достаточно сильным аргументом, чтобы переубедить приверженцев непрерывной модели. Но оно содержало в себе недвусмысленный намек. Должно было существовать какое-то объяснение такому свойству сочетания веществ.

Обозначения, принятые для описания таких реакций, способствовали распространению атомистической точки зрения. Сочетание азота с кислородом может быть записано в виде N + O или N + 2O. Между этими вариантами ничего нет. Оказалось, что все соединения содержат пропорции, соответствующие целочисленным отношениям. Например, сульфид алюминия дается формулой 2Al + 3S = Al2S 3, и элементы содержатся в нем в соотношении 2: 3. Элементы никогда не сочетаются иначе чем в целочисленных соотношениях. Создавалось впечатление, что в самом сердце химического мира существует музыкальная гармония. Музыка маленьких сфер.

Русский ученый Дмитрий Менделеев прославился тем, что смог расположить этот растущий список молекулярных ингредиентов так, что в нем начала проявляться закономерность, основанная на целых числах и подсчете. Казалось, возвращается пифагорейская вера в могущество числа. Как и многие ученые до него, Менделеев расположил элементы в порядке возрастания относительного веса, но он смог понять, что для выявления смутно возникающей закономерности необходимо проявить некоторую гибкость.

Он выписал известные элементы на карточки и постоянно раскладывал из них на своем столе своего рода химический пасьянс, пытаясь заставить их раскрыть свои тайны. У него ничего не получалось, и это приводило его в исступление. В конце концов он заснул, обессиленный, и увидел во сне разгадку, а проснувшись, смог разложить карточки по приснившейся ему системе. Один из важных моментов, которые позволили ему успешно расположить элементы, состоял в осознании необходимости некоторых пропусков – то есть понимании того, что в этой колоде не хватает нескольких карт.

Ключом к расположению элементов был так называемый атомный номер, зависящий от числа протонов в атомном ядре[36], а не от суммарного числа протонов и нейтронов, которое определяет массу ядра. Но, поскольку в то время никто не имел никакого понятия об этих, еще меньших, составляющих, Менделееву приходилось лишь догадываться о причинах, лежащих в основе его системы.

Назад Дальше