Мой бумажный звездный глобус – это модель такого небесного свода. Я поставил его на стол так, чтобы Полярная звезда оказалась в верхней точке икосаэдра. В середине глобуса нанесены знаки Зодиака, отмечающие последовательность месяцев года, – в том числе, разумеется, и мой собственный знак Девы. Нам кажется, что Солнце последовательно перемещается через все эти созвездия, возвращаясь в исходную точку к началу следующего года. В нижней половине глобуса расположены звезды, которые можно увидеть в Южном полушарии; самая яркая из них – Альфа Центавра. На самом деле она состоит из трех звезд, в число которых входит Проксима Центавра, считающаяся ближайшей к нашей собственной звезде, Солнцу.
Разнообразные варианты моего бумажного глобуса делали на протяжении многих тысячелетий. Цицерон пишет, что древнегреческие астрономы изготавливали модели небесного свода, на которых были отмечены звезды, – это были далекие предки моей бумажной Вселенной. К сожалению, ни одна из таких греческих моделей не дошла до нас, но в одном из моих самых любимых оксфордских музеев, в Музее истории науки, можно увидеть другие, сохранившиеся модели. Там есть великолепный глобус высотой около полуметра, сделанный в начале XVI в. в Германии. Созвездия на нем оживают в виде фигур птиц, рыб, животных и людей, напечатанных на бумажных сегментах и наклеенных на сферу.
Хотя моя современная бумажная модель не может сравниться красотой с глобусом XVI в. из Музея истории науки, его икосаэдральная форма восходит к Платону и его вере в то, что небесная оболочка, заключающая в себе нашу Вселенную, может быть не сферой, а додекаэдром – еще одним Платоновым телом, подходящим для игральных костей. И значение этой математической кости для понимания формы Вселенной может быть не таким надуманным, как кажется на первый взгляд.
Треугольные телескопы
Удивительно, что мы вообще что-то знаем о тех областях пространства, в которые мы никогда не сможем попасть. Люди всех культур неизменно смотрели в небо и размышляли о том, что там может быть. Присутствие Солнца и Луны становится очевидным прежде всего. Но как же древним культурам удалось открыть что-то об этих небесных телах, если они были прикованы к поверхности планеты? Я вижу в этом одно из самых замечательных свойств математики – она позволяет нам делать выводы об устройстве Вселенной, не выходя из наших уютных обсерваторий.
Тригонометрия, математика углов и треугольников, была разработана не для того, чтобы мучить школьников, а для ориентации в ночном небе. Она стала нашим первым телескопом. Еще в III в. до н. э. Аристарх Самосский смог вычислить отношение размеров Солнца и Луны к радиусу Земли и определить соотношение их удалений от Земли, используя лишь математические модели треугольников.
Например, когда Луна находится точно в первой или последней четверти, угол между Землей, Луной и Солнцем приблизительно равен 90°. Тогда, измерив угол Φ между Луной, Землей и Солнцем, можно вычислить отношение расстояний между Землей и Луной и между Землей и Солнцем методами тригонометрии. Отношение этих расстояний точно равно косинусу угла Φ, то есть определяется чисто математическими методами.
Прямоугольный треугольник, образуемый Землей, Луной и Солнцем в первой и последней четвертях Луны
Однако точность измерений Аристарха была такова, что определенное им соотношение расстояний отличалось от точного результата в 20 раз. По его оценке, угол был равен 87°, в то время как его истинное значение составляет 89,853°, что почти равно прямому углу. Малое отклонение значения угла такой величины приводит к довольно большому изменению соотношения длин сторон треугольника. Для истинного определения размеров Солнечной системы потребовалось изобретение телескопа и более замысловатых математических методов.
Даже и не имея телескопов, астрономы видели, что Луна и Солнце – не единственные тела, перемещающиеся по небу. Древние культуры заметили в ночном небе несколько светящихся точек, которые вели себя совершенно иначе, чем множество прочих звезд. Они – Меркурий, Венера, Марс, Юпитер и Сатурн – казались блуждающими световыми маяками, которые нельзя отметить на моей бумажной сфере, поскольку на следующую ночь они окажутся уже в других точках. Одно из объяснений того важного значения, которое число семь имеет для разных культур, связано с тем, что число видимых планет с добавлением Солнца и Луны равно именно семи.
Борьба с бесконечностью
Не только планеты каждый день перемещаются относительно звезд, – оказывается, что и звезды движутся друг относительно друга. Так что небесный свод на моем столе – всего лишь моментальный снимок состояния ночного неба на некоторый определенный момент. Например, на моей сфере отмечено легко узнаваемое созвездие Большой Медведицы. Но звезды, образующие Большую Медведицу, – Мерак, Дубхе, Алькаид (Бенетнаш), Фекда, Алиот и Мицар – находятся в движении: 100 000 лет назад они образовывали бы на моем глобусе совсем другой рисунок, и еще через 100 000 лет они тоже будут выглядеть по-другому.
Но древние астрономы считали, что звезды неподвижны, прикреплены к небесному своду, заключающему в себе Вселенную. Вопрос о том, что лежит за пределами этой сферы, практически не обсуждался. За ней была пустота, не содержащая ничего. Пространство вне моей бумажной модели было недоступно. Однако находились и такие средневековые философы, которые были готовы размышлять о природе этой пустоты. Николай Орем полагал, что за пределами небесного свода существует дальнейшее космическое пространство бесконечной протяженности. В своих работах он отождествлял это бесконечное пространство с Богом – что, возможно, не так уж и далеко от концепции Бога как того, чего мы не можем знать, которую я предлагал выше.
Изменяющаяся форма Большой Медведицы
Философские трудности проблемы бесконечности не пугали Орема. Так, он доказал, что сложение дробей 1 + 1/2 + 1/3 + 1/4 + … дает бесконечность – результат интуитивно не очевидный, поскольку добавляемые слагаемые становятся все меньше и меньше. Эта бесконечная сумма называется гармоническим рядом, потому что звук, извлекаемый из струны виолончели, составлен из гармоник, длины волн которых равны всем этим дробям. Как я объясню далее, то обстоятельство, что сумма такого гармонического ряда равна бесконечности, интересным образом влияет на то, как далеко мы в принципе можем заглянуть в пространство.
По-видимому, только в XV в. астрономы начали задумываться о том, что небесный свод может быть иллюзией, а Вселенная может простираться бесконечно. Николай Кузанский предположил, что Вселенная бесконечна и потому ее центром может считаться любая ее точка. Эту идею подхватил итальянский монах-доминиканец Джордано Бруно, написавший в 1584 г. эпохальную работу «О бесконечности, Вселенной и мирах».
Итак, Вселенная едина, бесконечна, неподвижна […] Она никоим образом не может быть охвачена и поэтому неисчислима и беспредельна, а тем самым бесконечна и безгранична и, следовательно, неподвижна[69].
Интересна логика, приведшая Бруно к такому выводу. Вселенная создана Богом, но Бог непознаваем. Поэтому Вселенная должна быть недоступна нашему пониманию. Следовательно, она должна быть бесконечной, так как конечная Вселенная была бы теоретически познаваемой. Я бы сказал, что верно обратное: если Вселенная бесконечна, это означает, что она может быть недоступна нашему пониманию. И если исследовать концепцию Бога как способа выражения непознаваемого, то из бесконечности Вселенной, если она действительно непознаваема, могло бы следовать существование такой концепции трансцендентности. Но бесконечна ли Вселенная, и если она бесконечна, то так ли она непознаваема, как кажется на первый взгляд?
Бруно основывает свое мнение о бесконечности Вселенной не только на вере в Бога. Одно из наиболее сильных возражений против конечности Вселенной, заключенной внутри небесного свода, сводится к вопросу о том, что находится за стенкой, заключающей в себе такую Вселенную. Многие предполагали, что за ней находится ничто, пустота. Но Бруно такой ответ не устраивал. Он считал еще, что время также простирается бесконечно – как в прошлое, так и в будущее. Такая, хотя и небесспорная, концепция позволяла избавиться от необходимости существования моментов Сотворения мира и Страшного суда. Споры Бруно не страшили, и его толкование Библии в конце концов поссорило его с католической церковью, что в то время было довольно неприятным обстоятельством. 17 февраля 1600 г. его сожгли на костре.
Идеи Бруно поднимают вопрос о самой возможности знания о бесконечности Вселенной. Если она конечна, то об этом, вероятно, можно узнать. Если поверхность Земли оказалась конечной и достижимой, не можем ли мы, путешествуя по Вселенной, доказать, что она конечна? Хотя у нас нет корабля, на котором мы могли бы отправиться на край Вселенной, ученые XVII в. изобрели остроумное средство исследования космоса – телескоп.
Идеи Бруно поднимают вопрос о самой возможности знания о бесконечности Вселенной. Если она конечна, то об этом, вероятно, можно узнать. Если поверхность Земли оказалась конечной и достижимой, не можем ли мы, путешествуя по Вселенной, доказать, что она конечна? Хотя у нас нет корабля, на котором мы могли бы отправиться на край Вселенной, ученые XVII в. изобрели остроумное средство исследования космоса – телескоп.
Далеко ли вы видите?
Тот факт, что искривленные стеклянные линзы, установленные внутри трубки, позволяют увеличить дальность зрения, был открыт поколением Галилея. Долгие годы честь изобретения телескопа приписывалась даже самому Галилею, но на самом деле она принадлежит голландскому очковому мастеру Иоганну Липперсгею, взявшему патент на прибор «для видения вещей удаленных, как если бы они были вблизи». Этот голландский прибор обеспечивал трехкратное увеличение.
Галилей узнал об этом приборе во время поездки в Венецию. Тем же вечером он разобрался в принципах его работы и вскоре уже изготавливал приборы, увеличение которых доходило до 33-кратного. Название «телескоп» придумал один греческий поэт[70], присутствовавший в 1611 г. на банкете в честь Галилея: τῆλε (теле) переводится с греческого как «далеко», а σκοπέω (скопео) – «смотрю». Действительно, телескоп позволил Галилею и последующим поколениям астрономов смотреть дальше, чем когда-либо. Галилей открыл луны, обращающиеся вокруг Юпитера, и пятна на Солнце, вращение которых свидетельствовало о том, что и Солнце вращается вокруг собственной оси. Эти явления послужили подтверждением модели гелиоцентрической Солнечной системы, предложенной Коперником.
В 1663 г. шотландский математик Джеймс Грегори осознал, что телескоп можно использовать, чтобы заново вычислить расстояние от Солнца до Земли. Иоганн Кеплер уже измерил время обращения каждой из планет вокруг Солнца и определил при помощи своих законов планетарного движения соотношения расстояний между планетами и Солнцем. Его третий закон гласит, что квадрат времени обращения планеты вокруг Солнца пропорционален кубу расстояния от нее до Солнца. Например, Венера совершает оборот по своей орбите за 3/5 времени, которое занимает оборот Земли; это означает, что расстояние между Венерой и Солнцем составляет около 7/10 (точнее, (3/5)2/3) расстояния между Землей и Солнцем. Правда, нужно помнить, что говорить о расстоянии от Солнца следует с осторожностью: как установил Кеплер, планеты описывают вокруг него не точные окружности, но эллипсы, так что это расстояние изменяется. В общем случае я имею в виду нечто вроде среднего расстояния.
Однако речь по-прежнему шла об относительных расстояниях. Грегори и другие поняли, что на основе наблюдений прохождения Венеры по диску Солнца, так называемого транзита, при помощи некоторых дополнительных тригонометрических операций можно установить, на каком именно расстоянии от Солнца находятся Земля и Венера. Если из двух разных точек на Земле произвести наблюдения разных моментов и точек прохождения Венерой солнечного диска, то можно определить угол треугольника, образованного двумя наблюдателями и Венерой. А тогда тригонометрия позволяет, вычислив расстояние между двумя наблюдателями на Земле, определить расстояние до Венеры.
Тригонометрия замечательна тем, что дает возможность преобразовывать величины, непосредственно измерить которые невозможно, например расстояние от Земли до Венеры, в нечто, измеримое с поверхности Земли, например углы или расстояние между двумя точками на Земле. Это вычисление представляло собой сложное, но изобретательное применение абстрактной математической мысли в сочетании с практическими астрономическими наблюдениями.
Прохождение Венеры, видимое из двух разных точек на Земле
Проблема заключалась в том, что такие транзиты случаются нечасто. С 1400 г. Венера проходила через диск Солнца всего десять раз. Грегори сначала предлагал использовать транзит Меркурия, так как следующее прохождение Венеры ожидалось лишь в 1761 г. Эдмонд Галлей знал о его работе и произвел наблюдения прохождения Меркурия, произошедшего в 1676 г. Однако оказалось, что кроме этого было произведено всего одно наблюдение: теоретически этого было достаточно для вычисления расстояния, но с учетом возможных ошибок число наблюдений следовало сделать как можно большим.
Расстояние от Земли до Солнца в конце концов смогли определить благодаря многочисленным наблюдениям прохождений Венеры в 1761 и 1769 гг. В ходе одного из первых согласованных всемирных научных экспериментов такого рода было вычислено, что Земля находится приблизительно в 153 000 000 км от Солнца. К сожалению, Галлей умер приблизительно за 19 лет до этого и не увидел кульминации проекта, который он пытался осуществить почти 90 годами раньше. Современные вычисления дают для среднего расстояния между Солнцем и Землей значение, равное 149 597 870 700 м.
Эти результаты дали первое представление о том, какие гигантские расстояния заключены в моем бумажном глобусе неба. Астрономы древности считали, что моя бумажная модель содержит меньшие глобусы, в которые вписаны планеты. Если бы они были правы, диаметры таких глобусов составляли бы миллионы километров.
Меня неизменно поражает способность тригонометрии преобразовывать измерения расстояний на Земле в измерения расстояний до планет, на которых никогда не бывал человек. Позднее последовали другие впечатляющие математические свершения. Телескопы и свет оказались не единственными инструментами для поисков того, что находится в космосе. Выяснилось, что математика тоже может увеличить дальность видения Вселенной, причем настолько, чтобы успешно предсказать существование новой планеты еще до того, как ее впервые увидят в окуляре телескопа.
Планета, открытая на кончике пера
Есть два средства открывать новые планеты – везение и логика. Первая со времен Античности вновь открытая планета была обнаружена благодаря везению. Немецкий музыкант Фридрих Вильгельм Гершель[71] переехал из Ганновера в Англию, пытаясь сделать там карьеру в музыке. Но, кроме того, он был своего рода астрономом-любителем и по ночам изучал небо при помощи своей внушительной коллекции телескопов.
13 марта 1781 г. Гершель заметил нечто необычное. То, что сначала показалось ему звездой, изменяло размер в зависимости от увеличения телескопа. Как правило, это говорит о том, что данный объект находится настолько близко к наблюдателю, что масштаб его изображения может быть ощутимо изменен. Далее следовало проверить, движется ли этот объект. Действительно, четыре дня спустя Гершель увидел, что положение объекта относительно звезд изменилось. Учитывая количество комет, обнаруженных на тот момент, мысль об открытии новой планеты пришла ему в голову не сразу.
Но после того, как он сообщил о своей находке королевскому астроному и за найденным объектом стали следить, выяснилось, что он имеет орбиту не параболическую, как можно было бы ожидать у кометы, а практически круглую. Кроме того, объект был слишком ярок для кометы и не имел видимого хвоста. Астрономы заключили, что речь все-таки идет о новой планете. Гершель хотел назвать ее в честь короля Георга III, но классическая мифология одержала верх. Сатурн был отцом Юпитера, и новую планету, орбита которой была расположена еще дальше, назвали по имени отца Сатурна – Ураном.
Идея новой планеты привела астрономов в сильнейший восторг. Они начали наносить на карты ее траекторию, искать ее луны и рассчитывать период ее обращения вокруг Солнца. Но Уран оказался вовсе не столь послушным, как ожидали некоторые астрономы. Ньютонова теория гравитации, столь успешно предсказавшая орбиты других планет, то и дело не срабатывала, когда дело доходило до предсказаний положения Урана. К 1788 г. планета отклонялась от расчетного положения на 1/120°. Стало понятно, что необходимо учесть гравитационное воздействие на нее Юпитера и Сатурна.
Новая траектория была опубликована в 1791 г., но к 1800-му обнаружились отклонения и от нее. К 1825 г. Уран ушел далеко вперед от предсказанного положения, но затем начал замедляться и к 1832 г. отстал от математических предсказаний. Могло ли дело быть в том, что его движению мешает некое таинственное вещество? Или же законы гравитации Ньютона на таком большом расстоянии от Солнца начинают нарушаться? Некоторые предполагали, что может существовать еще одна планета, замедляющая и ускоряющая движение Урана подобно тому, как Юпитер и Сатурн создают воздействующее на него гравитационное притяжение. Но если такая планета существует, где же она?
Если открытие Урана было удачей, то эту новую планету нужно было найти силой чистой логики, воплощенной в математике Ньютона. До сих пор астрономы брали известное положение планет и использовали математические формулы для расчета их орбит. Теперь эту процедуру нужно было запустить в обратном направлении. За движением Урана следили несколько десятилетий, и задача состояла в определении такого места, в котором могла бы находиться планета, объясняющая странности траектории Урана.