В конце концов туманность Андромеды пришлось убрать из нашей Галактики: наблюдения американского астронома Эдвина Хаббла доказали, что она является самостоятельной галактикой, отдельной от нашей. В 1925 г. Хаббл работал в обсерватории Маунт-Вилсон в Калифорнии и использовал телескоп Хукера, крупнейший телескоп своего рода на этот момент, для анализа расстояния до туманности Андромеды.
Хаббл заметил, в частности, одну звезду, которую можно было использовать для вычисления этого расстояния. В центре туманности располагалась одна из цефеид, которые исследовала Ливитт. Эта звезда пульсировала, становясь тусклее и ярче с периодом в 31 день. Согласно анализу Ливитт, она должна была быть очень яркой, но в телескопе выглядела чрезвычайно тусклой. Сочетание периода пульсирования и измеренного значения видимой светимости звезды показало, что она находится на расстоянии 2,5 миллиона световых лет от Солнца. Максимальное расчетное расстояние между звездами Млечного Пути составляет 100 000 световых лет. Открытие Ливитт в сочетании с вычислениями Хаббла самым решительным образом изменило наше представление о Вселенной. Она оказалась значительно больше, чем кто-либо мог вообразить.
Предложенный Ливитт метод использования цефеид для исследования космического пространства настолько радикально преобразовал нашу картину Вселенной, что шведский математик Гёста Миттаг-Леффлер хотел номинировать ее на Нобелевскую премию 1924 г. К своему огромному огорчению, он выяснил, что в декабре 1921 г. Ливитт умерла от рака и премия не могла быть ей присуждена.
Такое новое понимание масштаба удаленных галактик дало нам представление об истинной природе космоса. Но насколько простирается Вселенная за пределами таких удаленных галактик? Первым земным исследователям, покидавшим свои деревни, наверное, казалось, что Земля огромна – возможно, бесконечна. Но по мере развития путешествий стало понятно, что поверхность Земли конечна и доступна для исследования. Так как же обстоит дело с космосом? Сможем ли мы, покинув свою Галактику, понять, какое место наша космическая деревня занимает в более масштабной картине космоса?
Гигантская игра в «астероиды»
Легко себе представить Землю конечную, но не имеющую края. Решение этой загадки – поверхность сферы. Но как может быть конечным космос? Эту головоломку исследует один из моих любимых фильмов – «Шоу Трумана». Джим Керри играет в нем Трумана Бербанка, который не подозревает о том, что весь его мир – сценарное телевизионное реалити-шоу, поставленное внутри гигантского купола. Когда у него в конце концов возникают сомнения относительно окружающего его мира, Труман садится в лодку и отправляется в море, окружающее его родной город Сихэвен, – и обнаруживает, что небо, которое казалось ему бесконечным, на самом деле нарисовано на студийном заднике. А за краем своей вселенной он находит телекамеры, снимающие каждое его движение.
Я не думаю, что мы живем в таком вот «Шоу Трумана». Я не думаю, что, отправившись в космос, можно неожиданно натолкнуться на стенку студии или на окружающий мир небесный свод, подобный моей модели. И мне кажется, что большинство людей со мной согласятся. В конце концов, такая модель только поднимает вопрос о том, что находится за этим пределом. Встретим ли мы там небесную съемочную группу, наблюдающую за нами? А что случится с этой съемочной группой, если она отправится в такое же путешествие в своем мире? Там что, съемочные группы до самого конца? Поэтому большинство из нас, будучи поставлено перед этим вопросом, заключает, что единственное возможное решение этой головоломки – бесконечная Вселенная.
Но у математиков есть еще и третий вариант, согласно которому Вселенная может не иметь границы, но тем не менее быть конечной. В такой Вселенной космическое путешествие не продолжается бесконечно далеко, но в конце концов возвращается в свою начальную точку подобно кругосветному путешествию на Земле.
Чтобы понять, как такая Вселенная может быть устроена, полезно рассмотреть маленькую игрушечную вселенную. Игра «Астероиды», созданная в 1979 г. компанией Atari, дает превосходный пример конечной, но неограниченной двумерной вселенной. Эта вселенная состоит всего из одного компьютерного экрана, но, когда космический корабль доходит до верхнего края экрана, он не отражается от границы на манер двумерного «Шоу Трумана», а тут же появляется в самом низу. С точки зрения астронавтов, летящих в этом корабле, они совершают бесконечное космическое путешествие. То же происходит и при приближении корабля к левому краю экрана: он не врезается в стенку, а просто появляется на правом краю. Астронавты могут начать замечать повторяющиеся ориентиры, хотя, конечно, в условиях динамической вселенной узнавать одни и те же объекты, мимо которых они пролетают во второй или третий раз, может быть непросто.
На самом деле вселенная «Астероидов» имеет вполне определенную форму. Если допустить существование третьего измерения, в котором эту вселенную можно сложить, то, соединив верхний и нижний края экрана, мы получим цилиндр. Поскольку левый и правый края экрана также смыкаются, можно соединить два конца такого цилиндра и получить объект в форме бублика, который математики называют тором. Поверхность этого трехмерного тела и есть конечная вселенная игры «Астероиды».
Если взять любое конечное трехмерное тело, его двумерная поверхность образует альтернативную вселенную, конечную и не имеющую границ. Еще один пример такой двумерной вселенной дает поверхность сферы. Такие двумерные вселенные – не просто математические игрушки: они дают ключ к путешествиям по поверхности Земли. Многие культуры по всему миру задавались одним и тем же вопросом: бесконечна ли Земля, или же она имеет край, с которого можно упасть? Многие цивилизации представляли Землю в виде диска, окруженного водой, – наподобие мира Трумана.
Идея сферической Земли начала утверждаться лишь у пифагорейцев в V в. до н. э. Исчезновение кораблей за горизонтом, форма тени, отбрасываемой Землей на Луну во время затмений, изменение положения Солнца и звезд по мере продвижения на юг – все это способствовало такому сдвигу мировоззрения. Кругосветная экспедиция, организованная в 1519 г. Фернаном Магелланом (сам он погиб в этом путешествии), окончательно и несомненно доказала, что Земля имеет форму шара.
А как же Вселенная? Имеет ли она форму? Мы находимся примерно в том же положении, что и культуры древности, которые размышляли о форме Земли и хотели узнать, продолжается ли она бесконечно, или имеет край, или же может быть каким-то образом замкнута.
Но как можно сложить трехмерную вселенную, чтобы она имела конечный объем, но не имела краев? Тут может помочь математика, которая позволяет встроить нашу трехмерную Вселенную в пространство, имеющее большее число измерений, и сложить ее так же, как мы сложили мир игры «Астероиды». Хотя физически представить себе такое складывание невозможно, язык математики дает нам уравнения, позволяющие описать такие конечные трехмерные вселенные и, что еще более существенно, изучить их свойства.
Например, мы можем жить в трехмерной версии игры «Астероиды». Возможно, Вселенная, по существу, представляет собой гигантский куб с шестью гранями, подобный нашей игральной кости. Когда космический корабль достигает одной из этих граней, он плавно выходит из кубической вселенной через одну грань и вновь появляется на ее противоположной грани. В «Астероидах» было два замкнутых направления – влево-вправо и вверх-вниз. В трехмерной кубической вселенной должно быть замкнуто и третье направление. Если такой куб поместить в четырехмерную вселенную, его можно сложить, смыкая его грани, и получить четырехмерный бублик, он же тор, трехмерная поверхность которого и есть наша Вселенная.
Но наша Вселенная может иметь и другие формы. Окружность есть конечная двумерная фигура, поверхность которой – это конечная одномерная вселенная. Сфера есть конечная трехмерная фигура, поверхность которой – это конечная двумерная вселенная. При помощи математических уравнений можно построить четырехмерную сферу, поверхность которой будет конечной трехмерной вселенной, – и это будет еще одна возможная модель нашей Вселенной.
Даже если математика дает нам возможные варианты конечных вселенных, не имеющих границ, сможем ли мы когда-нибудь узнать, конечна ли наша Вселенная и какой может быть ее форма? Следует ли нам ожидать появления звездных Магелланов, которые смогут совершить кругосветное путешествие вокруг Вселенной? Учитывая масштабы известной Вселенной, путешествия с непосредственным участием человека кажутся довольно безнадежным способом проверки конечности Вселенной. Но в космосе есть другие путешественники, которые странствовали во Вселенной миллиарды лет и могут кое-что рассказать нам о том, конечна она или нет. Речь идет о фотонах.
Даже если математика дает нам возможные варианты конечных вселенных, не имеющих границ, сможем ли мы когда-нибудь узнать, конечна ли наша Вселенная и какой может быть ее форма? Следует ли нам ожидать появления звездных Магелланов, которые смогут совершить кругосветное путешествие вокруг Вселенной? Учитывая масштабы известной Вселенной, путешествия с непосредственным участием человека кажутся довольно безнадежным способом проверки конечности Вселенной. Но в космосе есть другие путешественники, которые странствовали во Вселенной миллиарды лет и могут кое-что рассказать нам о том, конечна она или нет. Речь идет о фотонах.
Космические Магелланы
Свет – великий путешественник. На нас постоянно падает свет, странствовавший по Вселенной на протяжении многих миллиардов лет. Не может ли часть этого света рассказать нам что-нибудь, что позволит нам догадаться, конечна ли Вселенная? Мы уже поняли, что случится с космическим кораблем, отправившимся в глубины космоса: в такой конечной вселенной он должен в конце концов вернуться в начальную точку своего путешествия, как в 1522 г. вернулись в Севилью корабли Магеллана.
То же может случиться и со светом. Представим себе фотон, покидающий наше Солнце в начале его существования, около 4,5 миллиарда лет назад. Предположим, что мы живем на поверхности четырехмерного бублика, в котором противоположные грани нашей кубической вселенной соединены. Что происходит со светом при приближении к одной из таких граней? Он плавно проходит сквозь нее, возникает на противоположной грани и может продолжать свое путешествие к его исходной точке. Если по пути его ничто не остановит, он может вернуться и попасть в телескоп земного наблюдателя, который впервые обнаружит этот фотон после его долгого путешествия. Что же увидит такой астроном? Да ничего особенного. Свет будет выглядеть так, как будто он был испущен очень удаленной звездой в начале ее существования. Понять, что астроном видит, как выглядело наше Солнце 4,5 миллиарда лет назад, будет очень трудно.
Однако такое положение дает нам возможность попробовать доказать конечность Вселенной, потому что мы можем посмотреть в противоположном направлении и проверить, не видна ли нам похожая картина на противоположной грани. Исследователи во Франции, Польше и США изучали распределение света, возникшего на очень ранних стадиях существования Вселенной в надежде, что разные части составляемой ими картины могут совпасть друг с другом.
Этим ученым показалось, к их немалому удивлению и неменьшему восторгу, что им удалось обнаружить первые признаки совпадения данных. Они начали анализ, который должен был показать, какие именно формы могли дать наблюдаемое распределение длин волн. Согласно полученным результатам, наилучшим кандидатом на роль формы Вселенной, в которой могли появиться такие распределения, был додекаэдр. Это еще одна форма «игральной кости», имеющая 12 пятиугольных граней. Как это ни удивительно, более 2000 лет назад Платон предполагал, что небесный свод, к которому прикреплены звезды, имеет форму не сферы, но именно додекаэдра. Но современная интерпретация предполагает, что, как и в случае сложенного куба, на взаимно противоположных гранях такого додекаэдра пространство смыкается. Интересно отметить, что для совмещения пятиугольников пришлось несколько повернуть их (на 36°). Однако большинству астрономов эти результаты не показались убедительными. Трудно сказать, не являются ли такие соответствия результатом случайного совпадения.
Существует еще один способ получить от света информацию о геометрии Вселенной. Свет может рассказать нам, как Вселенная искривляется. Предположим, наш путешественник, вооруженный телескопом, отправляется из своей деревни через совершенно однородную равнину. Сначала Земля кажется ему плоской, но через некоторое время становится заметной ее кривизна: оглянувшись назад, путешественник уже не видит своей деревни – что-то мешает ему ее увидеть. Если кривизна сохраняется по всей поверхности, то такая поверхность должна быть конечной. Такая кривизна, какую имеет шар, называется положительной кривизной. Плоская поверхность может быть неограниченной, простирающейся бесконечно, но также может быть подобной миру игры «Астероиды», в котором Вселенная экрана оказывается плоской, но конечной. Про плоские поверхности говорят, что они имеют нулевую кривизну. Существует еще один тип кривизны, подобный кривизне седла или чипсов Pringles. Такая фигура изгибается вниз в одном направлении и вверх – в другом. Ее называют отрицательной кривизной в отличие от положительной кривизны поверхности шара. Она создает не конечные, подобные поверхности шара, а бесконечные поверхности.
Двумерная поверхность Земли может быть искривлена в одну или в другую сторону; как выясняется, трехмерное пространство точно так же может иметь кривизну. Измерение этой кривизны может дать нам некоторое представление о том, как может быть сложено пространство. Если подобно Земле Вселенная имеет положительную общую кривизну, то она должна образовывать конечную форму. Если ее кривизна отрицательна, то она должна быть бесконечной. Если же Вселенная плоская, то она может быть бесконечной или конечной, подобно нашему кубическому миру, сомкнутому по противоположным граням.
Двумерные поверхности с положительной, отрицательной и нулевой кривизной
Чтобы определить общую кривизну пространства, мы можем исследовать свет, пересекающий его. Что мы видим? Пространство кажется почти что плоским, но трудно сказать, действительно ли оно совершенно плоское, или все-таки существует некая малая кривизна, изгибающая пространство. Различия кажутся такими малыми, что сказать, сможем ли мы когда-нибудь определить эту кривизну с точностью, достаточной, чтобы знать, как изгибается пространство, очень непросто.
Но истинное знание кривизны Вселенной затруднено еще и другим обстоятельством. По большей части наши исследования космоса основаны на предположении о том, что та точка Вселенной, в которой мы находимся, ничем особым не отличается. Эта гипотеза называется принципом Коперника. Когда-то мы считали, что находимся в центре мироздания. Но Коперник покончил с этой идеей. Так что теперь мы полагаем, что окружающая нас Вселенная выглядит приблизительно так же, как и в любом другом месте. Но это может быть и не так. Тот фрагмент Вселенной, который мы видим, вполне может оказаться совершенно особенным.
Представим себе, например, что наш земной путешественник живет на планете, имеющей форму полусферы: у нее совершенно плоское основание, но она неожиданно искривляется и образует половинку шара. Если деревня такого путешественника находится на плоской части, он будет считать, что и вся планета такая же плоская, пока вдруг не обнаружит резкое изменение кривизны. Вселенная может выглядеть таким же образом: она может быть плоской в нашей области, но иметь совершенно другую форму за пределами той части, которую мы можем видеть. Как мы можем быть уверены, что Вселенная столь однородна, как нам кажется?
Итак, вопрос о том, совершает ли свет кругосветные путешествия по конечной Вселенной подобно космической экспедиции Магеллана, все еще остается без ответа. Если это так, мы можем получить шанс узнать, конечна ли Вселенная. А может быть, она изогнута таким образом, что мы сможем выяснить, как именно Вселенная сложена. Конечно, Магеллан путешествовал по статичной планете. Как выяснилось, Вселенная обладает несколько большей динамичностью, чем мы предполагали, и открыл это обстоятельство Хаббл, космический Магеллан, когда он стал анализировать свет, доходящий до нас от звезд удаленных галактик.
8
Когда-то я мечтал, что смогу, глядя в ночное небо, уверенно показывать в нем всевозможные звезды и планеты: «Это вот Бетельгейзе» или «Видите вон там такую яркую точку? Это на самом деле не звезда, а планета Венера». Но у меня, к сожалению, чрезвычайно плохая память. Когда дело доходит до чего-то несистематического, вроде звезд, рассыпанных по небесному своду, мне трудно назвать что-нибудь кроме Большой Медведицы, не опираясь на какой-нибудь логический принцип. Разумеется, именно поэтому мы и создали фигуры вроде Большой Медведицы или Ориона – чтобы помочь нам ориентироваться в этих случайно разбросанных световых точках.
Оказывается, однако, что я и физически не очень подхожу для занятий астрономией. В качестве первой попытки поглубже заглянуть в космос я отправился в обсерваторию Милл Хилл на севере Лондона. Но моему желанию увидеть край Вселенной не позволил осуществиться вечный враг астрономов – облачность.