Именно на таких компьютерных моделях основываются попытки ответить на вопрос, над которым бился Пуанкаре, когда он открыл хаос: будет ли вообще существовать стабильная Земля, обращающаяся вокруг Солнца, на которой эволюция сможет продолжить свои азартные игры? Является ли наша Солнечная система устойчивой и периодичной, или же нам нужно бояться, что какой-нибудь кузнечик однажды разрушит нашу орбиту вращения вокруг Солнца?
Бабочка по имени Меркурий
Пуанкаре не смог ответить на вопрос о Солнечной системе, заданный королем Швеции, и выяснить, останется ли она в устойчивом равновесном состоянии или может разлететься в стороны в катастрофическом проявлении хаотического движения. Из его открытия, согласно которому некоторые динамические системы могут быть чувствительны к малым изменениям данных, следовало, что мы, судя по всему, не сможем точно узнать, какая судьба ожидает Солнечную систему, задолго до наступления каких-либо потенциально катастрофических событий.
Вполне возможно, что Солнечная система находится в безопасной, предсказуемой динамической области, подобной динамике численности популяции с низким коэффициентом воспроизводства. К сожалению, имеются данные, согласно которым мы не можем полагаться на эту утешительную математическую надежду. Новые компьютерные модели позволили получить новую информацию, в соответствии с которой Солнечная система все-таки находится в области, в которой господствует математика хаоса.
Измерить масштабы влияния малых изменений на результат можно, используя так называемый показатель Ляпунова. Например, в случае игры в бильярд на столах необычной формы с их помощью можно определить, насколько катастрофичным будет влияние малых изменений на развитие траектории шара. Если система имеет положительный показатель Ляпунова, это означает, что малое изменение начальных условий порождает экспоненциальное расхождение траекторий. Этот показатель можно использовать в качестве определения хаоса.
Используя этот критерий, несколько групп ученых смогли подтвердить, что наша Солнечная система действительно хаотична. Они рассчитали, что расстояние между двумя изначально близкими орбитальными решениями возрастает в 10 раз каждые 10 миллионов лет. Этот временной масштаб, конечно, отличается от того, на котором мы не в состоянии предсказать погоду. Тем не менее это означает, что мы не можем получить определенных знаний о том, что случится с Солнечной системой за следующие 5 миллиардов лет.
Если вы теперь в отчаянии недоумеваете, можем ли мы знать хоть что-нибудь о будущем, вас, возможно, утешит то обстоятельство, что математика не вполне безнадежна в том, что касается предсказаний. Есть одно событие, наступление которого через 5 миллиардов лет уравнения могут гарантировать, но событие это не радостное. Математические расчеты утверждают, что к этому моменту Солнце исчерпает запасы топлива и превратится в красного гиганта, поглотив в процессе Землю и другие планеты Солнечной системы. Но до тех пор, пока взрыв Солнца не поглотит Солнечную систему, мы обречены на попытки решить хаотические уравнения, чтобы узнать, какие планеты к моменту возникновения этого красного гиганта все еще останутся на своем месте.
А значит, если мы хотим узнать, что произойдет, то, как и в случае прогнозов погоды, мы вынуждены обсчитывать модели, варьируя точные значения положений и скоростей планет. Иногда такие прогнозы бывают довольно пугающими. В 2009 г. французские астрономы Жак Ласкар и Микаэль Гастино обработали несколько тысяч моделей будущего развития Солнечной системы. Их эксперименты выявили потенциальную бабочку: ею оказался Меркурий.
Моделирование развития начинают с ввода имеющихся у нас данных о положениях и скоростях планет до настоящего времени. Но определить эти данные со стопроцентной точностью трудно. Поэтому каждый раз, когда они запускали модель, они вносили в данные небольшие изменения. Вследствие влияния теории хаоса даже малые изменения могут породить существенные расхождения результатов.
Например, размеры эллиптической орбиты Меркурия известны астрономам с точностью до нескольких метров. Ласкар и Гастино обсчитали 2501 модель, изменяя эти размеры в диапазоне величиной менее сантиметра. Даже такие малые возмущения привели к потрясающим различиям в будущей судьбе Солнечной системы.
Можно было бы ожидать, что, если уж Солнечная система и будет разорвана на части, виновником этого окажется одна из больших планет, скажем Юпитер или Сатурн. Однако орбиты газовых гигантов чрезвычайно стабильны. Неприятностей следует ожидать от скалистых планет земного типа. В 1 % проведенных ими имитационных экспериментов наибольшая опасность была связана именно с маленьким Меркурием. Модели показывают, что орбита Меркурия может начать расширяться в результате некоего резонанса с Юпитером, причем существует возможность столкновения Меркурия с его ближайшим соседом, Венерой. В одной из имитаций чуть было не случившегося столкновения оказалось достаточно, чтобы вывести Венеру из равновесия, в результате чего Венера столкнулась с Землей. Даже прохождение вблизи других планет может привести к возникновению таких приливных сил, воздействие которых будет катастрофично для жизни на нашей планете.
Речь тут не идет о простом случае абстрактных математических рассуждений. Свидетельства таких столкновений наблюдались на планетах, обращающихся вокруг двойной звезды Ипсилон Андромеды. Странность их нынешних орбит можно объяснить только выбросом какой-то невезучей планеты, произошедшим когда-то в прошлом этой звезды. Но не спешите убегать и прятаться: согласно этим моделям, момент, в который Меркурий может начать свои шалости, наступит еще через несколько миллиардов лет.
Бесконечная сложность
Каковы же наши шансы предсказать результаты броска кости, лежащей передо мной? Лаплас сказал бы, что если мне известны размеры кубика, распределение его атомов, скорость, с которой он брошен, и его взаимодействие с окружающей средой, то вычисление точки его остановки теоретически возможно.
Открытия Пуанкаре и тех, кто пришел после него, обнаружили, что различия в нескольких знаках после запятой могут определить, упадет ли кость шестеркой или двойкой. Хотя возможных исходов броска игральной кости существует всего шесть, начальные данные могут варьироваться в потенциально непрерывном диапазоне значений. Тогда, очевидно, должны существовать точки, в которых чрезвычайно малое изменение переключает результат броска с шестерки на двойку. Но какова природа таких переходов?
Компьютерные модели могут производить прекрасные визуальные представления, позволяющие составить понятие о чувствительности различных систем к начальным условиям. Рядом с игральной костью из Лас-Вегаса у меня стоит классическая настольная игрушка, в которую я могу играть часами. Она состоит из металлического маятника, который притягивают три магнита, выкрашенные в белый, черный и серый цвет. Анализ динамики этой игрушки дает картинку, которая отражает конечное положение маятника при движении из всех точек квадратного основания игрушки. Покрасим точку белым, если маятник, запущенный из этой точки, в конце концов оказывается притянут к белому магниту. Точно так же покрасим серым или черным точки, из которых маятник попадает на серый или черный магнит. Получится вот такая картинка:
Как и в случае популяционной динамики, тут есть совершенно предсказуемые области. Если движение маятника начинается вблизи одного из магнитов, к этому магниту маятник и притягивается. Но по мере приближения к краям картинки мы оказываемся на гораздо менее предсказуемой почве. И действительно, такая картинка дает нам пример фрактала.
На ней есть участки, на которых не существует простого перехода от черного к белому. Если увеличивать изображение, картинка никогда не станет областью, заполненной одним цветом. Сложность рисунка сохраняется на всех масштабах.
Одномерный пример такой картинки можно соорудить следующим образом. Начертим отрезок единичной длины и для начала закрасим одну его половину черным, а другую – белым. Затем возьмем половинный участок между точками 0,25 и 0,75 и перевернем его. Теперь возьмем половину перевернутого участка, расположенную в его середине, и перевернем ее еще раз. Если повторять эту операцию до бесконечности, предсказанное поведение вокруг точки 0,5 становится чрезвычайно чувствительно к малым изменениям. Не существует такого участка, содержащего точку 0,5, который был бы закрашен одним цветом.
Существует более замысловатый вариант этой картинки. Возьмем снова отрезок единичной длины. Сотрем центральную треть отрезка. У нас остались два черных отрезка, разделенные белым промежутком. Сотрем теперь центральную треть каждого из черных отрезков. Получаем черный отрезок длиной 1/9, белый отрезок длиной 1/9, черный отрезок длиной 1/9, затем белый отрезок длиной 1/3, который был стерт на первом шаге, а потом опять: белый – черный – белый.
Вы, наверное, уже догадались, что нужно сделать дальше. На каждом шаге мы стираем центральную треть всех черных отрезков. И так до бесконечности. Полученная картинка называется канторовым множеством по имени немецкого математика Георга Кантора, с которым мы еще встретимся на последнем «рубеже», когда будем рассматривать то, что мы знаем о бесконечности. Предположим, что такое канторово множество определяет конечное положение маятника в моей настольной игрушке. Перемещая маятник вдоль этой линии, я выясняю, что на некоторых участках такая картинка предсказывает чрезвычайно сложное поведение.
Довольно странный расчет показывает, что суммарная длина стертой линии равна 1. Но внутри отрезка по-прежнему остаются черные точки: точка с координатой 1/4 не будет стерта никогда, так же как и точка 3/10. Однако такие черные точки не изолированы. На любом участке, окружающем черную точку, всегда находится бесконечно много черных и белых точек.
Как выглядит динамика игральной кости? Фрактальна ли она и, следовательно, непознаваема? Сначала я предположил, что поведение кости должно быть хаотичным. Однако недавние исследования обнаружили нечто неожиданное.
Знай свою кость
Недавно группа польских исследователей проанализировала бросок игральной кости с математической точки зрения и, используя высокоскоростную киносъемку, выяснила, что наша кость может быть не столь хаотичной и непредсказуемой, как мы опасались. В эту исследовательскую группу, работающую в Лодзи, входят отец с сыном Томаш и Марцин Капитаняки, а также Ярослав Стржалко и Юлиуш Грабский. В своей статье, опубликованной в журнале Chaos в 2012 г.[30], группа приводит картинки, сходные с полученной для магнитного маятника, но с более сложными начальными положениями, которые учитывают угол, под которым был брошен кубик, а также его скорость. Поведение кости можно считать предсказуемым, если в большинстве точек получившейся картинки кость падает той же стороной при малом изменении начальных условий. Такую картинку, например, можно раскрасить в шесть цветов, соответствующих шести граням кубика. Картинку можно считать фрактальной, если при любом увеличении масштаба по-прежнему можно видеть области, содержащие по меньшей мере два цвета. Если таких признаков фрактальности не видно, то поведение кости предсказуемо.
Модель, которую использовала польская группа, предполагала, что кость идеально уравновешена – так же, как та кость, которую я привез из Лас-Вегаса. Оказалось, что сопротивлением воздуха можно пренебречь, так как оно крайне мало влияет на полет кубика. Когда кость ударяется об стол, некоторая часть ее энергии рассеивается и после достаточного числа соударений кость теряет всю свою кинетическую энергию и останавливается.
Трение кубика об стол также играет важную роль, поскольку в первых нескольких соударениях кость с высокой вероятностью скользит по столу, а при последующих отскоках скольжение прекращается. Однако в модели, которую изучала польская группа, поверхность стола считалась лишенной трения, так как наличие трения делает динамику слишком сложной для расчетов. Таким образом, можно представить себе игральную кость, которую бросают на лед.
Я уже выписал уравнения движения кости во время ее полета в воздухе, основанные на законах движения Ньютона. В представлении польской группы они оказались не слишком сложными. А вот уравнения изменения динамики после соударения со столом выглядят довольно пугающе: они занимают в ее статье целых десять строк.
Исследователи выяснили, что, если количество энергии, рассеиваемой при соударении со столом, достаточно велико, распределение исходов бросков кости не обладает фрактальными свойствами. Это означает, что при достаточно высокой точности установления начальных условий результаты броска игральной кости предсказуемы и воспроизводимы. Можно предсказать, например, что зачастую кость будет останавливаться на той грани, которая была нижней в момент броска. То есть поведение игральной кости, геометрически правильной в статическом состоянии, может оказаться отличным от чисто случайного, если учесть ее динамику.
Однако при увеличении жесткости стола, которое приводит к уменьшению рассеяния энергии и, следовательно, к росту числа отскоков кубика, можно увидеть появление фрактальных свойств.
На этих картинках рассматриваются изменения двух параметров: высоты, с которой бросают кость, и вариаций угловой скорости вращения вокруг одной из осей. Чем меньше энергии рассеивается при соударении со столом, тем более хаотичным получается поведение кости и тем больше кажется, что судьбу моей игральной кости все-таки определяет воля богов.
По мере продвижения от (a) к (d) рассеяние энергии на столе уменьшается, что приводит к усилению фрактальных свойств результатов броска игральной кости
Играет ли Бог в кости?
Вернемся к задаче определения Бога как всего того, что мы не можем познать. Теория хаоса утверждает, что узнать будущее некоторых систем уравнений невозможно, так как они слишком чувствительны к малым неточностям. В прошлом боги не были сверхъестественным разумом, существующим вне системы; они были реками, ветром, огнем, лавой – то есть тем, что нельзя было предсказать или покорить. Тем, в чем существует хаос. Математика XX в. показала, что эти древние боги по-прежнему с нами. Существуют природные явления, которые никогда не будут укрощены и познаны. Теория хаоса предполагает, что наше будущее во многих случаях непознаваемо из-за его зависимости от мельчайших подробностей положения вещей в настоящем. Поскольку мы не можем получить полного знания настоящего, теория хаоса не позволяет нам познать будущее. По меньшей мере до тех пор, пока это будущее не станет настоящим.
Это не значит, что все аспекты будущего непознаваемы. Очень часто мы оказываемся в нехаотических областях, в которых малые флуктуации не оказывают большого влияния на результат. Именно поэтому математика смогла стать таким могущественным средством предсказания и планирования. В таких случаях мы знаем будущее. Но в других ситуациях получить такое знание мы не можем, хотя это неизвестное будущее в какой-то момент несомненно повлияет на нашу жизнь.
Интересно отметить, что некоторые богословы, разбирающиеся в науке и пытающиеся сформулировать научные объяснения возможности деятельности сверхъестественного разума в нашем мире, пытались представить тот пробел, который создает хаос, местом существования такого разума, влияющего на будущее.
Один из таких религиозных исследователей – это занимающийся квантовой физикой теоретик Джон Полкинхорн. Этот ученый, работающий в Кембридже, являет собой редкий пример разума, сочетающего строгость естественнонаучного образования с несколькими годами обучения на христианского священника. Мы еще встретимся с Полкинхорном на третьем «рубеже», когда будем рассматривать непознаваемость, присущую области его работы – квантовой физике. Но его также интересует тот создаваемый математикой хаоса пробел в знании, который дает его Богу возможность влиять на будущее человечества.
Полкинхорн предположил, что именно при помощи неопределенностей, заложенных в теории хаоса, сверхъестественный разум может действовать, не нарушая законов физики. Теория хаоса утверждает, что мы никогда не сможем знать начальные условия с точностью, достаточной для использования детерминистических уравнений, что позволяет существовать представлению Полкинхорна о божественном вмешательстве, которое подстраивает явления так, чтобы они оставались в соответствии с нашими частичными знаниями, но в то же время оказывает влияние на их результаты.
Полкинхорн неизменно подчеркивает, что применение таких предельно малых данных для осуществления каких-либо изменений требует абсолютно всеобъемлющего вмешательства свыше. Речь должна идти не о «Боге в деталях», а о Боге всеведущем. Поскольку теория хаоса утверждает, что даже положение одного электрона на другом конце Вселенной может оказать влияние на всю систему, то, чтобы управлять происходящим, необходимо располагать полным, всеобъемлющим знанием всей этой системы – то есть всей Вселенной. Нельзя выделить часть Вселенной и пытаться делать предсказания на основе этой части. Поэтому использование такой трещины в том, что нам неизвестно, требует знания всего целого.
Теория хаоса детерминистична, так что это не попытка использовать случайность, присущую, например, квантовой физике, в качестве средства влияния на результаты. По мнению Полкинхорна, способ решения задачи квадратуры круга детерминизма и оказания влияния на систему состоит в использовании зазора между эпистемологией и онтологией, между тем, что мы знаем, и тем, что соответствует истине. Раз мы не можем получить полное описание состояния Вселенной на данный момент, то, с нашей точки зрения, детерминированности нет. Есть множество разных сценариев, совпадающих с нашим объективным описанием того, что мы сейчас знаем об устройстве Вселенной. Полкинхорн считает, что это дает Богу возможность вмешиваться в любой точке времени, перекидывая систему из любого сценария в любой другой, причем мы остаемся в неведении относительно таких перемещений. Но, как мы уже видели, теория хаоса утверждает, что такие малые перемещения могут приводить к огромным изменениям результатов. При этом Полкинхорн старательно подчеркивает, что переходы между системами допустимы, если речь идет только об изменениях информации, а не энергии. Правила запрещают нарушать законы физики. Как говорит сам Полкинхорн: «Ни смена времен года, ни чередование дня и ночи отброшены не будут».