Внутренняя рыба - Нил Шубин 11 стр.


По ходу развития у всех позвоночных животных от акул до людей возникают эти четыре дуги. Но самое интересное происходит внутри этих дуг. Заглянув внутрь, мы можем по пунктам сравнить нашу голову с головой акулы и увидеть их глубинное сходство.

Рассмотрим развитие первой дуги человека и акулы, и мы увидим, что из ее тканей образуется одна и та же структура — челюсти. Разница состоит прежде всего в том, что у человека из тканей первой дуги образуются также некоторые слуховые косточки, которых нет у акулы. Неудивительно, что черепно-мозговой нерв, ведущий к челюстям, и у акул, и у людей один и тот же. Это нерв первой дуги, то есть тройничный нерв.

Клетки, расположенные внутри второй дуги, делятся, видоизменяются и дают начало решетке из хрящевой и мышечной тканей. У нас хрящи этой решетки разделяются и видоизменяются, образуя, во-первых, одну из косточек среднего уха (стремечко), а во-вторых, еще несколько небольших косточек в основании головы и горла. Одна из этих косточек, так называемый гиоид, помогает нам глотать. Возможностью глотать и слушать музыку мы обязаны структурам, развивающимся из второй дуги эмбриона.

У акул хрящи этой решетки тоже разделяются и образуют две кости, которые поддерживают челюсти. Одна из них (нижняя) соответствует нашему гиоиду, а другая (верхняя) поддерживает верхнюю челюсть. Если вы когда-нибудь видели, как большая белая акула пытается схватить кого-то зубами (например, сидящего в клетке ныряльщика), вы, должно быть, замечали, что ее верхняя челюсть может выдвигаться вперед, когда акула кусает, а затем возвращаться обратно. Верхняя кость, образуемая второй дугой, составляет часть рычажной системы, работа которой делает возможным такое движение челюстей. У этой кости, поддерживающей верхнюю челюсть акулы, есть и еще одно примечательное свойство: она соответствует одной из костей нашего среднего уха — стремечку. Кости, которые у акул поддерживают верхнюю и нижнюю челюсти, помогают нам глотать и слышать.

На первый взгляд кажется, что наши черепно-мозговые нервы (внизу справа) не похожи на черепно-мозговые нервы акулы (внизу слева). Но если присмотреться внимательнее, мы увидим их глубинное сходство. Все основные нервы человека есть уже у акулы. При этом соответствующие друг другу нервы акулы и человека не только обслуживают сходные структуры, но даже выходят из мозга в том же порядке.

Что же касается третьей и четвертой дуг, то оказывается, что многие из структур, которыми мы пользуемся, чтобы говорить и глотать, у акул соответствуют структурам, служащим опорой для жабр. Мышцы и черепно-мозговые нервы, которые позволяют нам глотать и говорить, акулам и рыбам позволяют двигать жабрами.

Строение нашей головы может показаться невообразимо сложным, но в его основе лежит простой и изящный план. Этот план — общий для всех живых существ, обладающих черепом, будь то акулы, костные рыбы, саламандры или люди. Открытие этого фундаментального плана было огромным достижением анатомии девятнадцатого века — времени, когда анатомы впервые стали исследовать под микроскопом зародыши разных животных. В 1872 году кембриджский анатом Фрэнсис Мейтленд Бальфур впервые обратил внимание на этот план, исследуя внутреннее строение жаберных дуг акулы. К сожалению, вскоре после этого он погиб в горах в результате несчастного случая, совершая восхождение на один из пиков Швейцарских Альп. Ему было немного за тридцать.

Гены жаберных дуг

В течение первых нескольких недель после зачатия в клетках жаберных дуг зародыша и во всех тканях, из которых впоследствии образуется наш мозг, последовательно включаются и выключаются целые батареи генов. В соответствии с инструкциями, записанными в этих генах, формируются разные части нашей головы. Представьте себе, что каждый участок головы получает свой генетический адрес, отличный от адресов других участков и обеспечивающий этому участку особый путь развития. Видоизменяя этот адрес, можно видоизменить и развивающиеся по этому адресу структуры.

Например, ген Otx активен в переднем участке, где формируется первая жаберная дуга. Позади этого участка работает ряд так называемых Hox-генов. В каждой жаберной дуге задействован разный набор этих генов. Обладая соответствующей информацией, мы можем составить карту наших жаберных дуг и созвездий из генов, задействованных в развитии каждой из них.

После этого можно приступить к экспериментам. Заменим генетический адрес одной дуги на генетический адрес другой. Возьмем эмбрион лягушки, выключим в нем некоторые гены, сделаем генетические сигналы клеток первой и второй дуг похожими друг на друга и в итоге получим лягушку с удвоенной челюстью: там, где должен был развиться гиоид, вместо него формируется вторая нижняя челюсть. Этот опыт показывает, какую принципиальную роль играют в развитии головы генетические адреса жаберных дуг. Стоит изменить адрес, как изменяются и структуры, развивающиеся из тканей дуги. Этот подход особенно замечателен тем, что позволяет нам экспериментировать с планом строения головы: мы можем по сути произвольно манипулировать порядковыми номерами дуг посредством изменения активности генов в составляющих эти дуги клетках.

Идем по головам: от безголовых морских чудищ до наших головастых предков

Но почему мы так подробно останавливаемся на лягушках и акулах? Почему не сравниваем строение нашей головы со строением других животных, например насекомых или червей? Но стоит ли это делать, если у этих существ нет даже черепа, не говоря уже о черепно-мозговых нервах? У всех этих животных нет даже костей. Если мы отвлечемся от рыб и перейдем к червям, мы окажемся в мягком и безголовом мире. Хотя и в нем, если присмотреться внимательно, можно найти частички нас самих.

Те из нас, кто преподает сравнительную анатомию студентам младших курсов, обычно начинают первую лекцию со слайда, на котором запечатлен ланцетник. Каждый год в сентябре по всей стране, от штата Мэн до Калифорнии, на экранах в лекционных аудиториях появляются сотни изображений этого животного. Почему? Вы, наверное, помните простую схему разделения всех животных на позвоночных и беспозвоночных.

Ближайшие родственники животных, наделенных головами, — ланцетники. На рисунке показан ланцетник и реконструкция ископаемой хордовой хайкоуэллы (Haikouella), жившей около 530 миллионов лет назад. У обоих этих существ есть хорда, спинной нервный тяж и жаберные щели. Хайкоуэлла известна по трем с лишним сотням экземпляров, добытых палеонтологами на юге Китая.

Так вот, ланцетник, с одной стороны, беспозвоночное, что-то вроде червя, а с другой стороны, он обладает многими общими признаками с позвоночными животными, такими как рыбы, амфибии, млекопитающие. Позвоночника у ланцетника нет, но, подобно всем существам, у которых позвоночник имеется, ланцетник обладает нервным тяжем, проходящим по телу внутри спины. Кроме того, параллельно этому нервному тяжу по всему телу ланцетника проходит упругий прут. Этот прут называют хордой. Он заполнен желеобразным веществом и служит опорой для всего тела. На стадии эмбриона у каждого из нас тоже была хорда, но, в отличие от ланцетника, у нас она постепенно атрофируется, уступая место формирующемуся вокруг нее позвоночнику. Остатки хорды при этом входят в состав хрящевых дисков, разделяющих наши позвонки. При повреждении такого диска из него выходит желеобразное вещество, когда-то заключенное внутри хорды, отчего в спине возникают ужасные боли, а движение позвонков друг относительно друга оказывается затруднено. Повреждая один из этих дисков, мы травмируем очень древнюю часть нашего тела. За которую надо сказать спасибо ланцетнику.

Ланцетник — не единственное такое беспозвоночное. Много ярких примеров подобных организмов можно найти не на мелководьях современных морей, где живут ланцетники, а в древних горных породах, залегающих в Китае и в Канаде. В отложениях, образовавшихся более 500 миллионов лет назад, захоронены остатки небольших существ, у которых не было головы, черепа, головного мозга и черепно-мозговых нервов. Они выглядят неброско, напоминают кляксы на поверхности камня, но качество сохранности у этих ископаемых необычайное. Если рассматривать их под микроскопом, можно увидеть великолепные отпечатки, отражающие мелкие детали строения мягких тканей, а иногда даже рельеф кожи. На этих отпечатках можно увидеть и еще одну удивительную особенность этих существ. Эти ископаемые — древнейшие известные организмы, обладавшие хордой и спинным нервным тяжом. Они позволяют нам узнать кое-что о происхождении частей нашего собственного тела.

Но кроме того, у этих миниатюрных беспозвоночных есть и еще одно общее с нами свойство — жаберные дуги. Например, у ланцетника их больше сотни, и внутри каждой из них находится небольшой хрящевой прутик. Подобно хрящам, на основе которых формируются наши челюсти, слуховые косточки и части гортани, эти хрящи служат опорой для жаберных щелей. Истоки строения нашей головы мы находим у беспозвоночных, вовсе головы не имеющих. Зачем ланцетнику его жаберные щели? Сквозь них прокачивается вода, из которой при этом отфильтровываются мелкие частички пищи. Из этого скромного источника берут начало основные структуры нашей головы. Точно так же на протяжении многих миллионов лет менялись и меняли свои функции зубы, гены, конечности и базовая структура нашей головы.

Глава 6. Лучший план тела{6}

Тело каждого из нас представляет собой совокупность примерно двух триллионов клеток, собранных вместе строго определенным образом. Наши тела трехмерны, и все клетки и органы занимают в каждом из трех измерений некоторое отведенное им место. Наверху расположена голова. Вниз от нее идет позвоночник. Кишечник располагается в передней части живота. Руки и ноги крепятся к позвоночнику по бокам. Все эти особенности строения отличают нас от примитивно устроенных организмов, представляющих собой комки или диски из клеток.

Такого рода особенности строения не менее важны и для тел других живых существ. Подобно нам, рыбы, ящерицы и коровы тоже обладают двусторонне симметричными телами, у которых есть перед и зад, верх и низ, правая и левая сторона. Спереди (он соответствует нашему верху) у всех этих животных находится голова, которая наделена органами чувств и внутри которой расположен мозг. Вдоль спины у них тоже проходит позвоночник. Кроме того, у них, как и у нас, на одном конце туловища тоже расположен рот, а на другом — анальное отверстие.

Голова находится спереди, она смотрит в том направлении, в котором организм обычно двигается — плывет, бежит или идет. Нетрудно понять, почему для большинства условий обитания (особенно для водной среды) не подошло бы строение организма, при котором спереди находился бы не рот, а анус. Это затрудняло бы не только питание, но и взаимодействие между особями.

Сложнее отыскать основы схемы нашего строения у более примитивных животных — например, у медуз. Тела у медуз имеют иное строение: их клетки образуют лишь два слоя, наружный и внутренний, а весь организм имеет форму диска. У них есть верх и низ, но нет переда и зада, головы и хвоста, правой и левой стороны, поэтому кажется, что они устроены совсем иначе, чем мы. Не стоит и пытаться сравнить план строения нашего тела с планом строения губки. Вы, конечно, можете попробовать, но результат будет принадлежать скорее области психологии, чем анатомии.

Чтобы должным образом сравнить самих себя с этими примитивными организмами, нам нужны определенные инструменты. История возникновения нашего плана строения, как и история появления наших рук и ног, во многом записана в нашем пути развития от оплодотворенной яйцеклетки до взрослого организма. В эмбрионах спрятаны ключи к решению величайших загадок жизни. Кроме того, эмбрионы всерьез расстроили мои собственные жизненные планы.

Общий план: сравним эмбрионы

Я поступил в магистратуру, собираясь изучать ископаемых млекопитающих, а через три года уже работал над диссертацией, посвященной рыбам и амфибиям. Я сбился с пути истинного, если можно так выразиться, занявшись изучением эмбрионов. В нашей лаборатории их было множество. Например, у нас развивались икринки саламандр и рыб, а также оплодотворенные куриные яйца. Я регулярно изучал их под микроскопом, отслеживая происходящие с ними изменения. Эмбрионы всех этих животных вначале напоминали небольшие беловатые группы клеток не больше трех миллиметров в длину. Наблюдать за ходом их развития было очень увлекательно. По мере роста эмбриона объем желтка, который служил для него источником пищи, в свою очередь, постепенно уменьшался. К тому времени, как желток заканчивался, организм обычно уже был достаточно велик, чтобы выйти из икринки или вылупиться из яйца.

Наблюдения за процессом развития эмбрионов сильно изменили мой образ мышления. Из такого скромного источника, как эмбрион на ранних стадиях развития, возникали удивительно сложные организмы птиц, лягушек, форелей, состоящие из триллионов клеток, организованных определенным образом. Но главное было даже не в этом. Эмбрионы рыб, амфибий и птиц были не похожи ни на что виденное мною ранее в ходе занятий биологией. Все они были устроены в общем одинаково. У всех была голова с жаберными дугами. Внутри головы из трех небольших вздутий у всех развивался головной мозг. У всех были маленькие зачатки конечностей. Собственно, именно конечностям и была посвящена моя диссертация, над которой я работал в течение последующих трех лет. Сравнивая развитие скелета у птиц, саламандр, лягушек и черепах, я убедился, что даже такие разные конечности, как птичьи крылья и лягушачьи лапки, на ранних стадиях развития устроены очень похоже. Глядя на все эмбрионы всех этих животных, я видел глубокое сходство их строения. Взрослые организмы выглядели по-разному, но истоки у них у всех были принципиально сходны. Если рассматривать эмбрионы, то кажется, что все различия млекопитающих, птиц, амфибий и рыб едва ли не бледнеют в сравнении с фундаментальным сходством всех этих существ. В то время я познакомился с открытиями Карла Эрнста фон Бэра.

В XIX веке было несколько естествоиспытателей, изучавших эмбрионы в поисках общего плана всего живого. Самым выдающимся из них был Карл фон Бэр. Он родился в знатной дворянской семье и поначалу учился на врача. Его преподаватели предложили ему изучить ход развития цыпленка, чтобы попытаться разобраться в том, как формируются внутри яйца его органы.

К сожалению, Бэр не мог себе позволить завести инкубатор. Не было у него и возможности исследовать множество яиц. Начало поэтому не сулило особых успехов. К счастью, у него был влиятельный друг, Христиан Пандер, располагавший средствами на проведение подобных экспериментов. Изучая куриные эмбрионы, Пандер и Бэр открыли одно фундаментальное правило: каждый орган цыпленка развивается из одного из трех слоев тканей эмбриона одной из ранних стадий. Эти три слоя получили название зародышевых листков. Это было поистине легендарное открытие, сохраняющее свое значение и по сей день.

Открытие этих трех слоев позволило Бэру задаться другими важными вопросами. У всех ли животных развитие идет по той же схеме? Развиваются ли из таких слоев сердца, легкие и мышцы и у других животных? И, что особенно важно, одинаковые ли слои дают начало одним и тем же органам разных видов?

Бэр сравнил три зародышевых листка эмбрионов пандеровских цыплят со строением ранних стадий развития всевозможных других животных, эмбрионы которых ему удалось раздобыть: рыб, рептилий, млекопитающих. Оказалось, что у всех этих животных каждый орган тоже развивался из тканей одного из трех зародышевых листков. Кроме того, из каждого зародышевого листка у разных видов формировались одни и те же органы. Например, сердца всех животных развивались из среднего зародышевого листка. Из другого, наружного листка у всех животных развивался мозг. Какими бы разными ни были взрослые представители тех или иных видов, будучи эмбрионами, они все проходили одни и те же стадии развития.

Чтобы вполне оценить важность этого открытия, нужно вновь обратиться к первым трем неделям развития наших собственных эмбрионов. В момент оплодотворения в яйцеклетке происходят существенные изменения: генетический материал сперматозоида сливается с генетическим материалом яйцеклетки, и яйцеклетка начинает делиться. Вскоре те клетки, на которые она разделилась, образуют полую сферу. У человека за первые пять дней после зачатия клетки делятся четыре раза и образуют сферу из шестнадцати клеток. Эта сфера, которую называют бластоцистой, напоминает шарик, заполненный водой. Тонкая оболочка из клеток окружает жидкость, заключенную внутри. На стадии бластоцисты у эмбриона по-прежнему не видно никакого плана строения: у него еще нет ни переда, ни зада и определенно нет разных органов и тканей. Примерно на шестой день после зачатия эта сфера из клеток прикрепляется к стенке материнской матки и начинает срастаться с ней, чтобы в конечном итоге совместить кровоток эмбриона с кровотоком матери. На шестой день развития эмбриона план строения его тела по-прежнему незаметен. Этой сфере из клеток еще очень далеко до организма, в котором можно было бы узнать млекопитающее, рептилию или рыбу — или тем более человека.

Если повезет, бластоциста прирастает к стенке материнской матки. Если она прирастает не внутри полости матки, а в каком-нибудь неправильном месте (такое явление называют внематочной беременностью), последствия могут оказаться плачевными. Около 96 % случаев внематочной беременности приходится на прирастание эмбриона к стенкам маточных труб (они же фаллопиевы трубы) недалеко от того места, где произошло оплодотворение. Это может происходить от того, что слизистые выделения перекрывают выход из фаллопиевой трубы в матку, из-за чего бластоциста и прирастает к стенке трубы. Если внематочную беременность не диагностировать вовремя, она может привести к разрывам тканей и внутренним кровотечениям. В очень редких случаях бластоциста может даже выходить из маточной трубы в брюшную полость, то есть в пространство между кишечником и стенкой живота. В еще более редких случаях такие бластоцисты прирастают к выстилающим брюшную полость покровам матки или даже к покровам прямой кишки матери. Более того, такой зародыш может даже полностью развиться! В некоторых случаях возможно рождение таких младенцев с помощью разреза брюшной стенки, но в целом внематочная беременность очень опасна, потому что в 90 раз по сравнению с нормальной, внутриматочной, беременностью увеличивает для матери риск смерти от кровотечения.

Назад Дальше