Общая гигиена: конспект лекций - Юрий Елисеев 6 стр.


Другие индикаторы фекального загрязнения

В сомнительных случаях, особенно когда обнаруживается присутствие колиформных организмов в отсутствие фекальных колиформ и Е. соli, для подтверждения фекальной природы загрязнения могут быть использованы другие индикаторные микроорганизмы. Эти вторичные индикаторные микроорганизмы включают фекальные стрептококки и сульфидирующие клостридии, особенно клостридию перфрингенс.

Фекальные стрептококки

Присутствие фекальных стрептококков в воде обычно указывает на фекальное загрязнение. Этот термин относится к тем стрептококкам, которые обычно присутствуют в экскрементах человека и животных. Эти штаммы редко размножаются в загрязненной воде, они могут быть несколько более устойчивыми к обеззараживанию, чем колиформные микроорганизмы. Отношение фекальных колиформ к фекальному стрептококку более чем 3 : 1 характерно для испражнений человека, а менее 0,7 : 1 – для испражнений животных. Это может быть полезным при установлении источника фекального загрязнения в случае сильно загрязненных источников. Фекальные стрептококки, кроме того, могут быть использованы для подтверждения достоверности сомнительных результатов теста на колиформы, особенно в отсутствие фекальных колиформ. Фекальные стрептококки могут быть полезны и при контроле качества воды в распределительной системе после ремонта водопроводной сети.

Сульфитредуцирующие клостридии

Это анаэробные спорообразующие организмы, наиболее характерным из которых является клостридиум перфрингенс, обычно присутствуют в фекалиях, хотя и в значительно меньших количествах, чем Е. соli. Споры клостридий выживают в водной среде дольше, чем организмы колиформной группы, и они устойчивы к обеззараживанию при неадекватных концентрациях этого агента, времени контакта или значений рН. Таким образом, их персистентность в подвергшейся обеззараживанию воде может свидетельствовать о дефектах очистки и длительности фекального загрязнения. Споры сульфитредуцирующих клостридий по СанПиНу должны отсутствовать при исследовании 20 мл питьевой воды.

Общее микробное число

Общее микробное число отражает общий уровень содержания бактерий в воде, а не только тех из них, которые образуют колонии, видимые невооруженным глазом на питательных средах при определенных условиях культивирования. Эти данные не имеют большого значения для обнаружения фекального загрязнения и не должны считаться важным показателем при оценке безопасности систем питьевого водоснабжения, хотя внезапное увеличение числа колоний при анализе воды из подземного водоисточника может служить ранним сигналом загрязнения водоносного горизонта.

Общее микробное число полезно при оценке эффективности процессов водоочистки, особенно коагуляции, фильтрации и обеззараживания, при этом основная задача заключается в поддержании их количества в воде на возможно более низком уровне. Общее микробное число может быть использовано также для оценки незагрязненности и целостности распределительной сети и пригодности воды для производства пищевых продуктов и напитков, где число микроорганизмов должно быть низким для сведения до минимума риска порчи. Ценность данного метода заключается в возможности сравнения результатов при исследовании регулярно отбираемых проб из одной и той же системы водоснабжения для обнаружения отклонений.

Общее микробное число, т. е. число колоний бактерий в 1 мл питьевой воды, не должно быть более 50.

Вирусологические показатели качества воды

К вирусам, вызывающим особое беспокойство в связи с передачей водным путем инфекционных заболеваний, относятся главным образом те, которые размножаются в кишечнике и в больших количествах (десятки миллиардов на 1 г кала) выделяются с фекалиями зараженных людей. Хотя репликации вирусов вне организма не происходит, энтеровирусы обладают способностью к выживанию во внешней среде в течение нескольких дней и месяцев. Особенно много энтеровирусов в сточных водах. При водозаборе на водоочистных сооружениях в воде обнаруживают до 43 вирусных частиц на 1 л.

Высокая выживаемость вирусов в воде и незначительная заражающая доза для человека приводят к эпидемическим вспышкам вирусного гепатита и гастроэнтерита, но через источники водоснабжения, а не питьевую воду. Однако потенциально такая возможность сохраняется.

Вопрос о количественной оценке допустимого содержания вирусов в воде очень сложен. Сложно и определение вирусов в воде, особенно питьевой, так как возможен риск случайного загрязнения воды при отборе проб. В Российской Федерации согласно СанПиНу оценку вирусного загрязнения (определение содержания колифагов) проводят по подсчету числа бляшкообразующих единиц, создаваемых колифагом. Прямое определение вирусов очень сложно. Колифаги присутствуют совместно с кишечными вирусами. Количество фагов обычно больше, чем вирусных частиц. По своей величине колифаги и вирусы очень близки, что важно для процесса фильтрации. Согласно СанПиНу в 100 мл пробы бляшкообразующих единиц быть не должно.

Простейшие

Из всех известных простейших патогенными для человека, передающимися через воду, могут быть возбудители амебиаза (амебной дизентерии), лямблиоза и балантидиаза (инфузории). Однако через питьевую воду возникновение данных инфекций происходит редко, лишь при попадании в нее сточных вод. Наиболее опасен человек, являющийся источником-носителем резервуара цист лямблий. Попадая в сточные и питьевые воды, а затем опять в организм человека, они могут вызвать лямблиоз, протекающий с хроническими диареями. Возможен смертельный исход.

По принятому нормативу цист лямблий в питьевой воде объемом 50 л наблюдаться не должно.

Должны отсутствовать в питьевой воде и гельминты, а также их яйца и личинки.

Безвредность воды в отношении загрязнений, нормируемых по санитарно-токсикологическим показателелям или по химическому составу

Безвредность и опасность воды в отношении санитарно-токсикологических показателей химического состава определяется:

1) содержанием вредных химических веществ, наиболее часто встречающихся в природных водах на территории РФ;

2) содержанием вредных веществ, образующихся в процессе ее водообработки в системе водоснабжения;

3) содержанием вредных химических веществ, поступающих в источники в результате хозяйственной деятельности человека.

Имеется ряд химических веществ, присутствие которых в питьевой воде в концентрациях, превышающих определенный уровень, может представлять определенную опасность для здоровья. Их допустимые уровни должны быть определены исходя из суточного потребления воды (2,5 л) человеком, весящим 70 кг.

Все химические вещества, определяемые в питьевой воде, не только имеют установленную ПДК, но и относятся к определенному классу опасности.

Под ПДК понимают максимальную концентрацию, при которой вещество не оказывает прямого или опосредованного влияния на состояние здоровья человека (при воздействии на организм в течение всей жизни) и не ухудшает условий гигиенического водопотребления. Лимитирующим признаком вредности химического вещества в воде, по которому установлен норматив (ПДК), может быть «санитарно-токсикологический», или «органолептический». Для ряда веществ в водопроводной воде имеются ОДУ (ориентировочные допустимые уровни) веществ в водопроводной воде, разработанные на основе расчетных или экспериментальных методов прогноза точности.

Классы опасности веществ делят на:

1 класс – чрезвычайно опасные;

2 класс – высокоопасные;

3 класс – опасные;

4 класс – умеренно опасные.

Безвредность химического состава питьевой воды определяется отсутствием содержания в ней опасных для здоровья людей веществ в концентрациях, превышающих ПДК.

При обнаружении в питьевой воде нескольких химических веществ, нормированных по токсикологическому признаку вредности и относящихся к 1-му и 2-му (чрезвычайно и высокоопасные) классу опасности, исключая РВ, сумма отношений обнаруженных концентраций каждого из них к их максимально допустимому содержанию (ПДК) не должна быть более 1 для каждой группы веществ, характеризующихся более или менее однонаправленным воздействием на организм. Расчет ведется по формуле:

(С1факт / С1доп) + (С2факт / С2доп) + … + (Сnфакт / Сnдоп) ≤ 1,

где С1, С2, Сn– концентрации индивидуальных химических веществ;

Сфакт – концентрации фактические;

Сдоп – концентрации допустимые.

Вредные вещества, образующиеся в процессе водообработки представляем в таблице 1 (см. приложение). Особое внимание следует обратить на этап хлорирования в процессе водоподготовки. Наряду с обеззараживанием, хлорирование может приводить и к насыщению хлором органических веществ с образованием продуктов гелогенезирования. Эти продукты трансформации в ряде случаев могут быть более токсичными, чем исходные, присутствующие на уровне ПДК химических веществ.

где С1, С2, Сn– концентрации индивидуальных химических веществ;

Сфакт – концентрации фактические;

Сдоп – концентрации допустимые.

Вредные вещества, образующиеся в процессе водообработки представляем в таблице 1 (см. приложение). Особое внимание следует обратить на этап хлорирования в процессе водоподготовки. Наряду с обеззараживанием, хлорирование может приводить и к насыщению хлором органических веществ с образованием продуктов гелогенезирования. Эти продукты трансформации в ряде случаев могут быть более токсичными, чем исходные, присутствующие на уровне ПДК химических веществ.


Таблица 1. Содержание вредных веществ, образующихся в процессе ее водообработки в системе водоснабжения.


При обеззараживании воды свободным хлором время контакта с водой должно быть не более 30 мин, связанным хлором – не более 60 мин. Общая концентрация свободного и связанного хлора не должна быть более 1,2 мг/л. Контроль содержания остаточного озона производится после камеры смещения при обеспечении времени контакта не менее 12 мин.

Показатели радиоактивного загрязнения питьевой воды

Безопасность воды по показателям РВ загрязнения определяется ПДУ суммарной объемной активности α– и β-излучателей, а при превышении ПДУ по этим показателям – путем оценки соответствия содержания отдельных радионуклидов нормам радиационной безопасности (НРБ): суммарная активность α-излучателей должна быть не более 0,1 Бк/л (беккереля) β-излучателей не более 1,0 Бк/л.

Органолептические показатели качества питьевой воды

Органолептические показатели обеспечивают эстетическую потребность, свидетельствуют об эффективности очистки, могут лежать в основе причин серьезных заболеваний, связанных с хронической дегидратацией (водно-солевого баланса).

Согласно СНиПу на воду питьвую, запах и привкус не должны превышать 2 баллов, т. е. это слабый запах и привкус, обнаруженный потребителем только в том случае, если указать на него, или сакцентрировать внимание.

Шкала нормируемых показателей выглядит следующим образом:

0 – не ощущается;

1 – не определяется потребителем, но обнаруживается опытным исследователем;

3 – заметный, вызывает неодобрение потребителя;

4 – отчетливый, вода не пригодна для питья;

5 – очень сильный запах или привкус.

Цветность питьевой воды должна быть не более 20°.

Мутность не должна быть более 2,6 ЕМФ или 1,5 мг/л.

ЛЕКЦИЯ № 5. Проблемы гигиены атмосферного воздуха. Структура, химический состав атмосферы

История и современные проблемы гигиены атмосферного воздуха

Гигиена атмосферного воздуха является разделом коммунальной гигиены. Она занимается рассмотрением вопросов о составе земной атмосферы, природных примесях к ней и загрязнениях ее продуктами деятельности человека, о гигиеническом значении каждого из этих элементов, нормативах чистоты воздуха и мерах по его санитарной охране.

Атмосферой называется газовая оболочка земли. Смесь газов, составляющих атмосферу, называется воздухом.

Предметом гигиены атмосферного воздуха является лишь воздух открытых пространств. Вопрос о воздухе жилых и общественных помещений рассматривается в других разделах коммунальной гигиены, а вопрос о воздухе рабочих помещений является одним из предметов промышленной гигиены.

Мысль о том, что воздух имеет существенное значение для жизнедеятельности человека, существовала задолго до возникновения научной медицины и гигиены. Высказывания по этому вопросу мы находим в древнейших сочинениях по медицине, в том числе у Авиценны и Гиппократа. После возникновения научной гигиены, которое относится к половине XIX столетия, вопросы гигиены атмосферного воздуха получили строго научную разработку. Они нашли свое изложение во всех крупнейших руководствах по гигиене, как у нас, так и за рубежом. Этим вопросом большое внимание уделяли такие выдающиеся гигиенисты, как Ф. Ф. Эрисман, Г. В. Хлопин, Pettenkofer.

Нужно сказать, что этот раздел гигиены долгое время имел рудиментарный характер. В нем рассматривался преимущественно вопрос о нормальном составе атмосферы и природных примесях к ней. Быстрое развитие гигиена атмосферного воздуха получила в ХХ в. в связи с растущим загрязнением атмосферы выбросами промышленных предприятий. Проблема дыма стала одной из злободневных проблем гигиены города. Таким образом, атмосфера – это фактор окружающей среды, оказывающий постоянное, прямое и косвенное воздействие на организм человека и условия его жизни.

В настоящее время гигиена атмосферного воздуха определяет ряд актуальных проблем, таких как:

1) гигиена и токсикология природных загрязнений, особенно редких и тяжелых металлов;

2) загрязнение атмосферного воздуха синтетическими продуктами: высокостабильными веществами, такими как дихлордифенилтрихлорэтан (ДДТ), производными фтор-, хлорметана – фреонами, хладонами;

3) загрязнение атмосферного воздуха продуктами микробиологического синтеза.

Атмосфера как фактор окружающей среды. Ее структура, состав и характеристика

В результате взаимодействия организмов между собой и окружающей средой в биосфере образуются экосистемы, которые связаны между собой обменом веществ и энергии. Важная роль в этом процессе принадлежит атмосфере, являющейся составной частью экосистем. Атмосферный воздух оказывает постоянное и непрерывное действие на организм. Это воздействие может быть прямым и косвенным. Оно связано со специфическими физическими и химическими свойствами атмосферного воздуха, который является жизненно важной средой.

Атмосфера регулирует климат Земли, в атмосфере происходят многие явления. Атмосфера пропускает тепловое излучение, сохраняет тепло, является источником влаги, средой распространения звука, источником кислородного дыхания. Атмосфера является средой, которая воспринимает газообразные продукты обмена веществ, оказывает влияние на процессы теплообмена и теплорегуляции. Резкое изменение качества воздушной среды может отрицательно сказаться на здоровье населения, заболеваемости, рождаемости, физическом развитии, показателях работоспособности и т. д.

Итак, Земля окружена газовой оболочкой (атмосферой). Говоря о ее структуре, следует обратить внимание на физический подход к оценке строения. Хотя имеют место и другие подходы, например физиологический, но физический универсален. Его мы и рассмотрим. По своему строению атмосфера с учетом удаления от поверхности Земли делится на тропосферу, стратосферу, мезосферу, ионосферу, экзосферу.

Тропосфера – это наиболее плотные воздушные слои, прилегающие к земной поверхности. Ее толщина над различными широтами земного шара неодинакова: в средних широтах она составляет 10—12 км, на полюсах – 7—10 км и над экватором – 16—18 км.

Тропосфера характеризуется вертикальными конвекционными токами воздуха, относительным постоянством химического состава воздушных масс, неустойчивостью физических свойств: колебанием температуры воздуха, влажности, давления и т. д. Эти явления обусловлены тем, что Солнце нагревает поверхность почвы, от которой нагреваются нижние слои воздуха. Вследствие этого температура воздуха с увеличением высоты снижается, что в свою очередь приводит к вертикальному перемещению воздуха, конденсации водяного пара, образованию облаков и выпадению осадков. С поднятием на высоту температура воздуха снижается в среднем на 0,6 °С на каждые 100 м высоты.

На состоянии тропосферы отражаются все процессы, совершающиеся на земной поверхности. Поэтому в тропосфере постоянно присутствуют пыль, сажа, разнообразные токсические вещества, микроорганизмы, что особенно заметно в крупных промышленных центрах.

Над тропосферой располагается стратосфера. Она характеризуется значительной разреженностью воздуха, ничтожной влажностью, почти полным отсутствием облаков и пыли земного происхождения. Здесь происходит горизонтальное перемещение воздушных масс, и попавшие в стратосферу загрязнения распространяются на громадные расстояния.

В стратосфере под влиянием космического излучения и коротковолнового излучения Солнца молекулы газов воздуха, в том числе и кислорода, ионизируются и образуют молекулы озона. 60 % атмосферного озона расположено в слое от 16 до 32 км, а максимальная его концентрация определена на уровне 25 км.

Воздушные слои, лежащие над стратосферой (80—100 км), составляют мезосферу, которая содержит себе лишь 5 % массы всей атмосферы.

Далее следует ионосфера, верхняя граница которой подвержена колебаниям в зависимости от времени суток и года в пределах 500—1000 км. В ионосфере воздух сильно ионизирован, при этом степень ионизации и температура воздуха повышаются с увеличением высоты.

Назад Дальше