Интернет вещей: Будущее уже здесь - Сэмюэл Грингард 6 стр.


В то время как волна новых технологий открывает все более комплексные и одновременно детальные способы постижения мира, сочетание сложных систем анализа общественного мнения в социальных медиа, моделей краудсорсинга и подключаемых датчиков и устройств делает анализ более подробным. В будущем станет возможным повысить точность прогноза погоды, создать более гибкую производственную модель на основе развития инноваций, использовать данные для выпуска более качественной продукции, эффективнее выводить эту продукцию на рынок, в короткие сроки выпускать новые линии одежды или блюда для ресторанов, радикально менять способы взаимодействия производителей и потребителей.

Взгляд в будущее

Бесспорно одно: в ближайшие месяцы и годы мобильные устройства станут еще умнее. Смартфоны уже сейчас могут «слышать» и «чувствовать» на базовом уровне. У них есть встроенные микрофоны, камеры, GPS-навигаторы, акселерометры, гироскопы и другие датчики, которые по-разному действуют и реагируют в зависимости от факторов и условий окружающей среды. Вместе они создают интеллект устройства, превращая последний из обычного телефона в многофункциональный компьютер, который трансформирует мир вокруг нас.

В ближайшем будущем смартфоны станут распознавать запахи и вкусы, а также начнут больше учитывать контекст. Это не только научит телефоны не звонить и не вибрировать в театре или во время сна, но и откроет куда более широкие возможности. Например, телефон, снабженный датчиками температуры и влажности, и подключенный по Bluetooth к устройствам для измерения пульса и кровяного давления, сможет дать более точную информацию о спортивных результатах и общем состоянии здоровья человека. У метеорологов появятся более точные данные, и они будут лучше предсказывать погоду.

Сегодня эти концепции уже в пределах наших возможностей. Компания Adamant Technologies из Сан-Франциско разрабатывает маленький процессор, который сможет выполнять цифровое преобразование запаха и вкуса. Эта система использует примерно 2000 датчиков для определения оттенков аромата и вкуса, что значительно отличается от тех 400 рецепторов, которыми оснащен нос человека. Система будет определять, когда у человека неприятно пахнет изо рта, а когда он слишком много выпил, чтобы садиться за руль. Цифровой «нос» смартфона однажды научится определять основные медицинские показатели или выявлять несвежую еду.

Кроме того, если представители министерства здравоохранения получат доступ к такому типу данных (через краудсорсинг или автоматизированный сбор), то можно будет распознавать зараженное мясо и другие испорченные продукты. Если упаковка пищевых продуктов будет содержать радиочастотные метки, то фабрики и магазины смогут идентифицировать непригодную партию товара и немедленно убирать ее с полок, тем самым снижая риск распространения заболевания. А смартфон с функцией осязания позволит потребителям «пощупать» фактуру ткани через Интернет. Приложения будут расширять реальность: достаточно будет поднести камеру смартфона к любому объекту – от дерева до пирамиды майя, чтобы мгновенно получить о нем информацию.

Постепенно появляются так называемые носимые технологии – умные часы и браслеты, умные очки (такие как Google Glass), умная одежда. Эти устройства расширяют и улучшают Интернет вещей, и человеку становится доступно все больше данных. Эти технологии уменьшают количество отвлекающих факторов: больше не нужно постоянно вынимать телефон из кармана или сумочки, чтобы проверить, нет ли новых уведомлений. Электронная ткань и носимые гаджеты в перспективе будут следить за работой организма и фиксировать уровень тепла, высокие уровни ультрафиолета и химических веществ, аллергенов и токсинов в окружающей среде. Nike, Adidas и некоторые другие компании уже начинают встраивать датчики в одежду и обувь.

Но и это еще не предел. Используя Bluetooth, ближнюю бесконтактную связь, радиочастотные метки и другие беспроводные технологии, ученые исследуют возможность использования нанодатчиков и оптоволокна, чтобы заглянуть внутрь обрушившихся зданий, промышленного оборудования и даже тела человека. Все больше внимания уделяется сетям умных объектов или сенсоров (их уже миллионы, а то и миллиарды), которые взаимодействуют друг с другом и учитывают контекст. Это позволит создать армию дронов для служб доставки, которые будут эффективно выполнять свои задачи в считаные минуты. Возможно, появятся умные инструменты и автомобили, которые не позволят пользователю выходить за границы безопасности.

В следующих главах мы рассмотрим эти открытия и другие новые технологии. Достаточно сказать, что подключенное к Сети будущее постепенно вступает в свои права, и мобильные технологии здесь – это солнце, вокруг которого вращаются планеты других технологий. Число разнообразных подключаемых устройств и систем (особенно в потребительской сфере) все растет, и вскоре это так сильно изменит наш образ жизни, работы и общения, как нам и не снилось. Мы в самом начале пути.

3. Возникновение промышленного Интернета

Появление новой модели

Центральное место в концепции Интернета вещей занимает промышленный Интернет. Именно он обеспечивает основную инфраструктуру, которая поддерживает подключенное оборудование и данные. Этот термин, который в основном применяется к промышленному гиганту General Electric, означает интеграцию машин с датчиками, программным обеспечением и системами связи, которые вместе образуют Интернет вещей. Промышленный Интернет объединяет технологии и процессы из таких областей, как большие данные, самообучение машин и межмашинная коммуникация (М – М).

Одни называют этот подключенный к Интернету бизнес-мир индустрией 4.0, намекая на четвертую волну революционных промышленных инноваций (предыдущие открыли миру механизацию, массовое производство и внедрение компьютеров и электроники), другие – просто умной индустрией или умным производством. Неудивительно, что разные компании придумывают этому явлению свои броские названия. Например, IBM называет данную технологию «умная планета», а Cisco Systems довольствуется «Интернетом вещей».

Независимо от того, какой именно выбран термин, структурная основа для следующего шага в бизнесе и технологиях, по сути, будет одна и та же. Промышленный Интернет и Интернет вещей держатся на одном технологическом фундаменте и действуют в одном и том же виртуальном пространстве, хотя первый часто рассматривается как обособленная часть или компонент Интернета вещей. Но и у того и у другого есть общая цель – объединение физического и виртуального миров, стирание границ между ними, а также различий между машиной и человеком, чтобы создать намного более мощный интеллект, чем это возможно с помощью одной машины или одного устройства.

Одни называют этот подключенный к Интернету бизнес-мир индустрией 4.0, намекая на четвертую волну революционных промышленных инноваций (предыдущие открыли миру механизацию, массовое производство и внедрение компьютеров и электроники), другие – просто умной индустрией или умным производством.

До сих пор промышленный Интернет тесно связан с умными счетчиками учета потребления, отслеживанием транспортных средств и имущества, а также оптимизацией работы заводов, оборудования и машин. Однако в последующие несколько лет существующие цифровые устройства будут намного более тесно связаны с работой оборудования. Кроме того, промышленный Интернет станет служить фундаментом для разнообразных потребительских устройств и систем, которые мы рассмотрим в следующей главе.

В отчете McKinsey Global Institute под названием «Интернет вещей»{13} говорится следующее:

По мере того как возникают новые способы создания ценности, бизнес-модели, основанные на сегодняшней (по большей части статичной) информационной архитектуре, вынуждены решать новые задачи. Когда в реальном времени считываются предпочтения определенного потребителя в определенной географической точке, динамическое ценообразование может повысить вероятность покупки. А если знать, насколько часто или интенсивно используется товар, можно предусматривать дополнительные варианты – например, плату за использование, а не прямую продажу. Если весь производственный процесс будет оснащен множеством датчиков, то управление производством будет эффективнее. Когда производственная среда непрерывно проверяется на наличие опасных факторов, а сами объекты корректируют свои действия во избежание повреждений, число рисков и связанных с ними расходов сокращается. В результате выигрывают те компании, которые используют эти возможности. Иные же будут неконкурентоспособными.

Данные имеют значение

На самом базовом уровне как Интернет вещей, так и промышленный Интернет имеют отношение к данным и извлечению из них пользы. Сегодня благодаря всеобщей компьютеризации и практически повсеместному сетевому взаимодействию биты и байты данных перемещаются по всей планете в реальном времени. Все больше разнообразных устройств (стационарные компьютеры, ноутбуки, планшеты и смартфоны) служат средством быстрого сбора, обмена и доступа к данным все большего объема. Разумеется, функционирование подключаемых устройств (всех, от инсулиновых помп в больницах до домашних систем освещения) и обратная связь, позволяющая принимать решения, зависят прежде всего от данных.

Специалисты по обработке данных ввели термин «ценность точной информации». Речь идет о способности так располагать точки ввода данных, а затем собирать и анализировать информацию, чтобы получать наиболее полную картину. Достичь этой цели невероятно сложно, потому что чрезвычайно трудно собрать все данные, необходимые для получения идеальной картины, а затем выстроить такой алгоритм, который будет надлежащим образом учитывать все возможные переменные. Например, способность верно прогнозировать погоду зависит от четкого сбора точных данных, ввода релевантных данных и их осмысления путем применения сложных алгоритмов. То есть теоретически, если бы ученые задействовали подходящие системы и программное обеспечение, а также получили доступ к достаточной вычислительной мощности, прогнозы погоды были бы точными на 100 %.

На сегодняшний день существует слишком много переменных величин и ограничений, чтобы получить идеальную картину некого сложного события в любой сфере, будь то прогнозы погоды, сельское хозяйство, производство, здравоохранение, транспорт или рынок ценных бумаг. Поэтому вместо попыток создавать идеальные модели специалисты по обработке данных сосредоточились на построении самых лучших возможных моделей с использованием больших данных и аналитики. Здесь огромную роль играет прогнозная аналитика, которая выявляет и осмысляет события еще до того, как они произойдут. Например, это позволит банку выявить потребителя, который подумывает купить новый автомобиль, но еще не начал присматриваться к разным моделям. На заводе будут заранее знать, когда должна сломаться деталь в каком-то оборудовании, а в супермаркете – какие продукты купит тот или иной человек.

Поток данных от подключаемых объектов и оборудования разрастается в геометрической прогрессии. Согласно отчету компании по управлению данными Wipro под названием «Большие данные: ускорение процессов производства», за время шестичасового рейса на Боинге-737 из Нью-Йорка в Лос-Анджелес генерируется колоссальное количество информации – 120 терабайт. Вся она собирается и хранится в самолете{14}. Что еще более важно, эти данные могут быть проанализированы, чтобы выявить все аспекты работы двигателя.

Неудивительно, что информация становится ценным экономическим активом. Согласно прогнозу фирмы Gartner, занимающейся консалтингом в области IT, через несколько лет информационные активы и данные крупных компаний уже будут у них на балансе. Превращение данных в валюту повлияет на оценку товарно-материальных ценностей, сделки по слиянию и поглощению и многое другое. Однако эта экономическая ценность значит куда больше, чем просто активы. По оценке McKinsey Global Institute, большие данные могут снизить затраты на разработку продукции производственных компаний на 50 % и больше{15}. Изучение огромного количества точек ввода данных аналитическими программами приведет к обнаружению недостатков в качестве товара или услуг, снизит эксплуатационные расходы и в корне изменит подход компаний к инвестированию в людей и оборудование.

Картина действительно меняется по мере того, как компании учатся получать доступ к большим данным и использовать их. Хотя базы данных, программные приложения и неструктурированные потоки информации уже приносят массу новых знаний, эти источники блекнут на фоне обширной и еще не исследованной области данных, которая существует в пределах физических границ нашей планеты. До сих пор способов измерить, собрать и обработать эти данные не существовало. Они всегда находились за пределами нашего восприятия и почти точно так же были недоступны для приборов – подобно тому, как сомнительным выглядит существование радиоволн и ультрафиолетового излучения. Электромагнитные волны стали иметь для человека значение только тогда, когда он создал устройства и системы, способные их обнаруживать.

Интернет вещей обещает на порядок увеличить количество точек ввода данных. Сочетание повсеместного подключения к Сети, недорогих датчиков и простой микроэлектроники дает возможность подключать к Интернету буквально все что угодно. Пакеты с молоком, дороги, мосты, транспортные средства, деревья, оборудование, медицинские приборы и энергетические установки вдруг превращаются в точки ввода данных. Данные пересекаются и тем самым создают новые знания и возможности.

Почувствовать выгоду

В центре промышленного Интернета находятся датчики. За последние несколько лет развитие технологий (что сопровождалось уменьшением размеров устройств) привело к новому восприятию объектов в естественной среде.

Сегодня перечень устройств для ввода данных и подключаемых систем включает в себя самые разнообразные вещи: модули геолокации и GPS, сканеры штрихкодов, термометры, барометры, приборы для измерения влажности, датчики вибраций, датчики давления, гироскопы, магнитометры, камеры, аудио– и видеомониторы, акселерометры, датчики движения, радары, сонары и лидары. Последние используются компанией Google для управления гуглмобилями. Эти беспилотные автомобили проехали без водителей более 700 000 миль, при этом не произошло ни одного столкновения, вызванного техническими причинами.

Датчики собирают данные, но для их управления и осмысления нужны компьютеры, системы хранения и программное обеспечение. Подключаемые системы часто опираются на интерфейс прикладных программ (API), чтобы сделать данные доступными для приложений, когда и где требуется (эти небольшие программные компоненты соединяют между собой различные устройства и программы, по сути определяя процесс взаимодействия и способы обмена данными). Они обеспечивают окончательную обработку в целях извлечения данных, распознавания лиц и перевода на другой язык. Например, система опознает человека или на основе выражения его лица предлагает ему определенные товары, когда он входит в магазин. Либо же позволяет человеку сфотографировать вывеску или сообщение на неизвестном ему языке и мгновенно получить перевод. Также система использует технологию расширенной реальности, которая позволяет человеку сфотографировать какой-нибудь объект (например, Эйфелеву башню) и тут же получить всю информацию о нем. Информация в виде полупрозрачного принта появляется поверх изначального изображения или на дисплее умных очков типа Google Glass.

Возможности безграничны, а потенциальные выгоды для бизнеса значительны. По словам консультантов компании McKinsey Майкла Чуи, Маркуса Леффлера и Роджера Робертса, промышленный Интернет вещей несет с собой совершенно новые перспективы. Вот что они писали в 2010 г. в отчете под названием «Интернет вещей»{16}:

Некогда предсказуемые пути информации перестают быть таковыми: физический мир становится чем-то вроде информационной системы… Эти сети производят огромные потоки данных, которые поступают на компьютеры для анализа. Когда объекты начинают воспринимать элементы среды и передавать информацию, они превращаются в инструменты для комплексного понимания мира и быстрого реагирования на любую ситуацию. Принципиальное изменение состоит в том, что теперь эти материальные информационные системы начинают разворачиваться и некоторые из них могут обходиться без человеческого вмешательства.

Что же все это несет для наиболее передовых компаний? Генерируемые машинами данные сейчас составляют около 15 % всех данных, имеющихся у компаний. Однако в течение следующих десяти лет этот показатель, по всей видимости, увеличится до 50 %. Интеллектуальные активы – по сути, устройства, оснащенные датчиками и подключенные друг к другу – будут контролировать параметры, предоставлять данные об использовании и поведении оператора, а также следить за условиями и техническим состоянием.

Интернет вещей, скорее всего, станет источником огромной прибыли в промышленности и коммерческой отрасли. Если снизить затраты на топливо всего на 1 % или настолько же уменьшить капитальные затраты для непроизводительной системы, то экономия составит десятки и даже сотни миллиардов долларов. Промышленный Интернет породит экономическую деятельность, измеримую в десятках триллионов долларов.

Назад Дальше