Красота в квадрате - Алекс Беллос


Alex Bellos

Alex Through the Looking-Glass:

How Life Reflects Numbers and Numbers Reflect Life

Three Rivers Press

Алекс Беллос

Красота в квадрате

Как цифры отражают жизнь и жизнь отражает цифры

Москва

«Манн, Иванов и Фербер»

2015

Информация

от издательства

Н а у ч н ы й р е д а к т о р Александр Минько

Издано с разрешения Janklow & Nesbit (uk) Ltd и литературного агентства Prava i pеrevodi

На русском языке публикуется впервые

Беллос, Алекс

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры / Алекс Беллос ; пер. с англ. Н. Яцюк. — М. : Манн, Иванов и Фербер, 2015.

ISBN 978-5-00057-605-2

Читая эту книгу, вы не сразу сможете осознать, что изучаете и понимаете сложные идеи и концепции, которые прежде казались доступными только ученым и специалистам. Вы с удивлением обнаружите, насколько интересным и веселым может быть мир математики.

Книга будет полезной для всех, кто любит математику и науку вообще. И для тех, кто получил «удовольствие от x».

Все права защищены.

Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс».

© Alex Bellos, 2014

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2015

Посвящается Нэт

Предисловие

Математика — это шутка.

Поверьте, я говорю совершенно серьезно.

Понять математику — это то же самое, что уловить смысл шутки.

Мыслительный процесс в обоих случаях один и тот же.

Подумайте вот о чем. Шутка — это небольшой рассказ со своим построением и кульминацией. Вы внимательно следите за развитием сюжета до самой развязки, которая вызывает у вас улыбку.

Любая математическая концепция — тоже своего рода короткий рассказ с построением и кульминацией. Безусловно, это совсем другая история, где главные действующие лица — числа, фигуры, символы и закономерности. Как правило, в математике такую историю называют доказательством, а ее кульминацию — теоремой.

Вы следите за доказательством, пока не наступит развязка. И вдруг все становится понятным! Нейроны начинают буйствовать! Внезапный прилив интеллектуальной удовлетворенности оправдывает ваше первоначальное замешательство — и вы улыбаетесь.

Удовольствие от хорошей шутки и озарение в математике — эмоции одного порядка. Именно поэтому понимание математики может быть настолько приятным и захватывающим.

Подобно шуткам с очень смешной кульминацией, самые красивые теоремы проливают свет на нечто совершенно неожиданное. Они раскрывают новую идею, перспективу. Хорошая шутка вызывает смех. Математика приводит в благоговейный трепет. Именно из-за этого элемента неожиданности я влюбился в математику с малых лет. Она — единственный предмет, систематически подвергающий сомнению те выводы, к которым я когда-то пришел.

Цель данной книги — удивить вас. В ней я расскажу о своих любимых математических концепциях и попытаюсь обнаружить следы их присутствия в нашей повседневной жизни. Я хочу, чтобы вы по достоинству оценили красоту, функциональность и увлекательность логического мышления.

В моей предыдущей книге «Алекс в стране чисел. Необычайное путешествие в мир математики»1 я совершаю странствие в мир математической абстракции. В этой возвращаюсь к реальности: меня в равной мере интересует как реальный мир, отраженный в зеркале математики, так и абстрактный, возникший под влиянием физического опыта.

Сначала я подвергаю психоанализу людей (какие чувства они испытывают по отношению к числам и что вызывает эти чувства), затем — числа, каждое в отдельности и все вместе. У каждого числа есть свои свойства, но если взять множество чисел, то можно заметить нечто удивительное: они ведут себя как хорошо организованная группа.

Числа помогают нам постичь смысл бытия, что мы и пытаемся сделать с того самого момента, как научились считать. Пожалуй, наиболее удивительное свойство математики состоит в том, что она позволяет нам четче понять мир, в котором мы живем. Цивилизация обязана своим развитием открытию таких простых фигур, как окружность и треугольник, — сперва в графическом виде, а затем и в виде уравнений.

Я бы сказал, что математика — это самое впечатляющее и продолжительное коллективное начинание в истории человечества. В этой книге мы, ведомые путеводной звездой открытий, проследуем от египетских пирамид до Эвереста, из Праги в Гуанчжоу, из викторианской гостиной в цифровую вселенную самовоспроизводящихся сущностей. Мы встретимся с самыми дерзкими мыслителями, среди которых будут как хорошо известные мудрецы античного мира, так и менее известные представители современности. В этом списке есть знаменитость из Индии, частный детектив из Соединенных Штатов Америки, член тайного общества из Франции и создатель космических кораблей, проживающий со мной по соседству в Лондоне.

Во время странствий по физическому и абстрактному мирам мы исследуем привычные для нас математические понятия, такие как число π и отрицательные числа, а также познакомимся с более загадочными концепциями, которые станут нашими близкими друзьями. Мы рассмотрим конкретные примеры практического применения математических идей — и обещаю: это приведет вас в восторг!

Для понимания содержания этой книги не нужно быть выдающимся математиком, поскольку она предназначена для обычного читателя. В каждой главе представлена отдельная математическая концепция, для усвоения которой не понадобятся предварительные знания. Хотя, несомненно, одни концепции неизбежно окажутся сложнее, чем другие. Иногда изложенный материал соответствует уровню бакалавра, поэтому в нем трудно будет разобраться без должной математической подготовки. В таких случаях просто переходите к началу следующей главы, где я снова возвращаюсь к элементарному уровню. Поначалу текст книги может вызвать у вас замешательство, особенно если вы впервые знакомитесь с данной темой, однако именно в этом и состоит мой замысел. Я хочу, чтобы вы взглянули на жизнь по-другому. А прозрение порой требует времени.

Возможно, это кажется вам слишком серьезным, но на самом деле все вовсе не так. Способность математики удивлять сделала ее самой занимательной из всех интеллектуальных дисциплин. Числа всегда были для человека развлечением не в меньшей степени, чем математическим инструментом.

Математика поможет вам не только лучше понять мир, но и получать от него больше удовольствия.

Алекс Беллос

1. У каждого числа своя история

Джерри Ньюпорт попросил меня выбрать четырехзначное число.

— 2761, — сказал я.

— Это 11 × 251, — ответил он, назвав числа без запинки и колебаний.

— 2762.

— Это 2 × 1381.

— 2763.

— 3 × 3 × 307.

— 2764.

— 2 × 2 × 691.

Джерри — бывший таксист из города Тусон, страдающий синдромом Аспергера. У него румяное лицо, маленькие голубые глаза и русые волосы, прядь которых спадает на большой лоб. Джерри очень любит птиц и числа. Когда мы встретились, он был одет в красную рубашку с цветочным узором и изображением попугая. Мы сидели в гостиной в компании какаду, голубя, трех длиннохвостых попугаев и двух корелл, которые тоже слушали наш разговор и порой даже повторяли некоторые фразы.

Когда Джерри видит большое число, он сразу же делит его на простые числа — 2, 3, 5, 7, 11… то есть числа, которые делятся только на себя и единицу [1] 2. Благодаря этой привычке Джерри получал особое удовольствие от работы таксиста, поскольку у него перед глазами постоянно мельками номерные знаки автомобилей. Когда Джерри жил в Санта-Монике, где номерные знаки состоят из четырех-пяти цифр, он часто посещал четырех­этажную парковку возле местного торгового центра и не уходил оттуда до тех пор, пока не прорабатывал все номера.

Однако в Тусоне в номерах автомобилей всего три цифры, поэтому теперь Джерри почти не смотрит на них.

— Я обращаю внимание только на числа, в которых больше четырех цифр. Если же их меньше, это как раздавленное на дороге животное. Да, именно так! — возмущенно заявил он. — Ну же, покажите мне что-нибудь новенькое!

Синдром Аспергера — это психическое расстройство, при котором человек испытывает трудности в межличностном общении, но обладает уникальными талантами. В случае Джерри это невероятные способности к арифметическим вычислениям в уме. В 2010 году Джерри безо всякой подготовки принял участие в чемпионате мира по устному счету, проходившем в Германии, и получил титул «Самый универсальный вычислитель». Он стал единственным участником конкурса, набравшим максимальное количество баллов за выполнение задания, по условиям которого 19 пятизначных чисел за десять минут следовало разложить на простые множители. Больше никто даже не приблизился к этому результату.

Джерри выработал свою систему разбиения больших чисел на простые множители: перебирать простые числа в порядке возрастания, отсеивая сначала все четные числа, которые делятся на 2, потом все числа, которые делятся на 3, затем на 5 и т. д.

Джерри повысил голос:

— О да, мы просеиваем числа, детка! — Он начал вертеться. — Мы на сцене. Люди, давайте свои числа — мы просеем их для вас! Да! Джерри и решето!

— У меня есть два решета, — прервала его жена Мэри, сидевшая на диване рядом с нами. Мэри, музыкант и бывшая актриса массовок в сериале «Звездный путь», тоже страдает синдромом Аспергера, хотя у женщин он встречается гораздо реже, чем у мужчин. Пары с таким синдромом крайне редко вступают в брак; в 2005 году был снят фильм Mozart and the Whale («Моцарт и Кит»)3, в основу которого лег их необычный роман.

Иногда Джерри не удается разложить большое число на простые множители, а это означает, что данное число само является простым. Такие случаи вызывают у Джерри непередаваемые ощущения:

— Когда встречаешь новое простое число, это как будто смотришь на камни и находишь среди них что-то необычное. Нечто вроде бриллианта, который можно взять домой и положить на полку, — объясняет Джерри.

И, сделав паузу, добавляет:

— Новое простое число — это как новый друг [2].

Первые слова и символы для обозначения чисел появились около 5000 лет назад в Шумере, исторической области в Южном Двуречье, расположенной на территории современного Ирака. Шумеры придумывали для чисел названия, пользуясь имеющимися в их языке словами. Например, для обозначения единицы употреблялось слово ges («геш»), второе значение которого — мужчина или фаллос. Двойка обозначалась словом min («мин»), также символизирующим женское начало. Возможно, это подчеркивало то, что мужчина занимает доминирующее положение, а женщина — лишь дополнение к нему, или характеризовало мужской половой член и женскую грудь [3].

Изначально числа использовались для практических целей, таких как подсчет овец или расчет налогов, но при этом отображали и абстрактные закономерности, что делало их предметом глубоких размышлений. Одним из первых математических открытий было, пожалуй, разделение чисел на две категории: четные — целые числа, которые делятся на 2 без остатка (например, числа 2, 4 и 6); и нечетные — которые не делятся на 2 без остатка (например, 1, 3 и 5). Греческий мыслитель Пифагор, живший в VI веке до нашей эры, провозгласил нечетные числа мужскими, а четные — женскими, тем самым подтвердив отмеченную шумерами ассоциативную связь между единицей и мужчиной, а также двойкой и женщиной. Он утверждал, что нежелание делиться на два — это признак силы, тогда как склонность к такому делению — признак слабости. Пифагор дал следующее арифметическое обос­нование своих выводов: нечетные числа главенствуют над четными точно так же, как мужчина главенствует над женщиной, поскольку сложение нечетного и четного чисел всегда дает в результате нечетное число.

Пифагор больше всего известен теоремой о треугольниках, о которой мы поговорим позже. Тем не менее его утверждение о гендерной принадлежности чисел доминировало в западной философской традиции более двух тысяч лет. В христианстве это нашло отражение в мифе о сотворении мира: Адама Бог создал первым, а Еву — второй. Единица символизирует единство, тогда как двойка — «грех как отклонение от изначального добра» [4]. Средневековая церковь считала нечетные числа, в отличие от четных, более сильными, добродетельными, праведными и приносящими удачу. Во времена Шекспира были широко распространены метафизические представления о нечетных числах. В комедии The Merry Wives of Windsor («Виндзорские насмешницы») Фальстаф заявляет: «Я верю в нечет и всегда ставлю на нечетные числа — говорят, счастье их любит»4. И эти предрассудки сохранились до наших дней. Мистическими по-прежнему считаются только нечетные числа, в частности магическое число три, приносящее удачу, число семь и несчастливое число тринадцать.

Кроме того, именно Шекспиру приписывают употребление слова odd («нечетный») в новом значении [5]. Первоначально это слово ассоциировалось исключительно с числами и использовалось в таких фразах, как odd man out («третий лишний») — член группы из трех человек, оставшийся без пары [6]. Однако в комедии Love’s Labour’s Lost («Бесплодные усилия любви») чудаковатый испанец Дон Адриано де Армадо описывается как «человек характера крайне причудливого и слишком, слишком тщеславного»5. С тех пор словом, которое ассоциировалось раньше только с единицей в остатке от деления на два, начали обозначать и нечто необычное, причудливое.

Человеку свойственна чувствительность к числовым закономерностям. Они вызывают у него субъективную реакцию, порой чрезмерную — как в случае Джерри Ньюпорта, но в основном пробуждают глубокие культурные ассоциации. Восточная философия построена на признании дуальности мира, отраженной в таких символах, как инь и ян, «тьма» и «свет». Инь ассоциируется с пассивностью, женским началом, Луной, невезением и четными числами, а ян — с их противоположностями: агрессивностью, мужским началом, Солнцем, удачей и нечетными числами. Здесь снова можно увидеть историческую связь между удачей и нечетными числами. Особенно она сильна в Японии, где, например, принято дарить по три, пять или семь предметов, но никогда четыре или шесть [7]. Когда японцы дарят деньги молодоженам, они предпочитают суммы 30 000, 50 000 и 100 000 иен. Сумма 20 000 тоже приемлема, но в этом случае следует дарить одну банкноту достоинством 10 000 иен и две банкноты по 5000 иен. Эстетика нечетных чисел лежит также в основе икебаны — традиционного японского искусства создания цветочных композиций, в котором используется только нечетное количество цветов (это связано с влиянием буддийских представлений об асимметричности природы). Кайсэки — обед японской высокой кухни — состоит исключительно из нечетного числа блюд. Японские дети получают этот сигнал в раннем возрасте, во время праздника под названием Shichi-Go-San (буквально «семь, пять, три») — фестиваля, в котором участвуют дети только семи, пяти и трех лет. Профессор Осакского университета экономики Ютака Нишияма писал, что пристрастие японцев к нечетным числам до того укоренилось, что когда в 2000 году правительство выпустило банкноту достоинством 2000 иен, никто не стал ее использовать [8].

В странах Восточной Азии предрассудки в отношении чисел более распространены, чем на Западе. Результаты их жителей по международным тестам на математические способности гораздо выше, а это говорит о том, что мистические предубеждения не мешают освоению математических навыков. На самом деле такие предрассудки могут даже усиливать интерес к числам, желание ближе с ними познакомиться и находить в них нечто занимательное. Самое распространенное в Азии предубеждение касательно чисел связано с игрой слов. В японском языке, кантонском и мандаринском диалектах китайского языка, а также в корейском языке слово «четыре» (shi, sei, si, sa) звучит точно так же, как слова, обозначающие смерть, поэтому носители этих языков всячески избегают числа четыре. В этом регионе во многих отелях нет четвертого этажа, в салонах самолетов отсутствует четвертый ряд, а компании не выпускают продукты с четверкой в названии. В действительности число четыре ассоциируется со смертью настолько сильно, что эта связь превратилась в неизбежно сбывающееся пророчество: по данным наблюдений в США, четвертого числа каждого месяца среди американцев японского и китайского происхождения количество сердечных приступов со смертельным исходом резко увеличивается [9]. Напротив, число восемь считается счастливым, поскольку в китайском языке оно звучит так же, как слово «процветание». В ценах, которые указываются в газетных рекламных объявлениях, число 8 появляется несоразмерно часто. Получается, что две смерти равны процветанию.

В Индии нечетные числа тоже ассоциируются с процветанием и удачей. Но есть ли какая-то причина, по которой как на Востоке, так и на Западе они наделены духовным смыслом в большей степени, чем четные? Возможно, это связано с тем, что наш мозг обрабатывает нечетные числа дольше, чем четные. Данный феномен открыл психолог из Университета Пейса Теренс Хайнс и назвал его эффектом нечетных чисел. Во время одного из экспериментов Хайнс показывал на экране числа из двух цифр [10]: либо нечетных (например, 35), либо четных (как 64), либо одна четная и одна нечетная (как 27). Он попросил участников эксперимента нажимать кнопку лишь тогда, когда они видят числа, состоящие только из четных или нечетных цифр. Испытуемым понадобилось в среднем на 20 процентов больше времени, чтобы нажимать кнопку в случае чисел из двух нечетных цифр; кроме того, они при этом делали больше ошибок. Сначала Хайнс не поверил полученным результатам и подумал, что в методике тестирования, должно быть, какая-то погрешность, однако дальнейшие исследования однозначно подтвердили наличие данного феномена. Мы относимся к нечетным числам иначе не только из-за многовековых культурных установок, но и потому, что по-другому о них думаем. Нечетные числа стимулируют работу мозга.

Дальше