Если вы примете аргумент о том, что в оба дня должен быть момент времени, когда я находился на одной высоте, я доволен: мое доказательство сделало свое дело. Математическое доказательство — это всего лишь инструмент, используемый одним человеком для того, чтобы убедить другого человека в истинности математического утверждения — а я вас убедил [1].
Однако более требовательного математика могут не удовлетворить мои доводы. Он может отбросить их по причине недостаточной строгости. Где доказательство того, что я столкнусь сам с собой? Давайте нарисуем график, отображающий мое восхождение от подножия горы на высоте А к ее вершине на высоте В, а также наложим на него маршрут моего спуска на следующий день, как показано на рисунке ниже. Теперь вопрос стоит по-другому: существует ли точка, в которой эти две линии пересекутся? Большинство читателей ответят: конечно же, есть! Но придирчивого математика мне так и не удалось убедить.
До конца XVIII века считалось, что если кривая поднимается от высоты А до высоты В, то она обязательно должна пройти каждую точку между А и В. На интуитивном уровне это утверждение кажется очевидным. В действительности оно согласуется с тем, как определялась тогда непрерывная кривая. Однако, когда математики внимательнее проанализировали свойства непрерывности, они пришли к выводу о необходимости более четких определений. Утверждения, которые воспринимались раньше как нечто само собой разумеющееся, были переведены в категорию теорем, требующих доказательства на основании еще большего количества исходных предположений. К их числу относилось и приведенное выше утверждение о том, что непрерывная кривая с минимальным значением А и максимальным значением В обязательно должна пройти все промежуточные значения; сейчас оно известно как теорема о промежуточном значении. Но ее доказательство настолько сложное, что его изучают только в университетах, хотя его будет достаточно, чтобы убедить нашего дотошного друга. В итоге он согласится с тем, что две кривые на представленном выше графике пересекаются в определенной точке, поскольку это утверждение вытекает из доказательства за несколько шагов.
Маршрут восхождения на вершину горы и спуска к ее подножию
Эксперименты — движущая сила науки. Доказательства — движущая сила математики. Существует множество способов проведения экспериментов, так же как и множество методов доказательств математических утверждений. В этой главе мы рассмотрим некоторые из них. Кроме того, проанализируем, как изменилось отношение к доказательствам, и пообщаемся с анонимным членом тайного общества, исповедующего математическую строгость. Но сначала давайте перекусим.
Теорема о промежуточном значении может показаться очевидной, но у нее есть ряд интересных следствий. Одно из них — теорема о блинах, которую я предпочитаю описывать в менее сладких выражениях. Если вы рассыплете на столе соль (или подадите блины), мы можем доказать наличие прямой, которая делит соль (или блинчик) на две части равной площади, причем прямая может быть проведена под каким угодно углом [2]. Метод, с помощью которого это делается, представлен на рисунке ниже. Сначала нарисуйте за пределами пятна соли прямую под любым углом и назовите ее Х, а затем перемещайте ее в направлении соли, параллельно к исходному положению. Прямая пересечет пятно соли в точке А, когда она еще не покрывает площадь пятна, и оставит соль позади в точке В, когда все пятно пройдено. Пересеченная площадь пятна соли меняется непрерывно по мере того, как прямая проходит это пятно, перемещаясь из точки А в точку В. Согласно теореме промежуточного значения, эта прямая обязательно попадет в позицию, в которой пройденная площадь составляет ровно половину общей площади. Наше доказательство не указывает, где именно проходит линия раздела, а только говорит о том, что она однозначно существует.
Теорема о соли
А теперь давайте рассыплем на столе соль и перец. Здесь мы тоже можем доказать наличие прямой, разделяющей их на две части равной площади. Начнем с определения прямой Х, которая делит пополам пятно соли и не касается перца, как показано на рисунке ниже. Затем повернем прямую по часовой стрелке, не забывая следить за тем, чтобы она постоянно разбивала пятно соли на две равные части. Мы знаем, что это можно сделать, поскольку, как было показано выше, деление пятна соли пополам происходит под любым углом. Наша прямая касается пятна перца в точке А и выходит за его пределы в точке В. Покрытая площадь пятна перца увеличивается непрерывно от ноля до максимума, а значит, прямая обязательно пройдет ту точку, в которой она тоже делит пятно перца на две равные части. На рисунке пятна соли и перца расположены отдельно, но, даже если бы они пересекались, всегда найдется прямая, которая разделит их на две части равной площади.
Теорема о соли и перце
В период между Первой и Второй мировыми войнами математики из Львова (тогда Польша) регулярно встречались в Шотландском кафе и обсуждали там такие математические «лакомства», как теорема о блинах [3]. Один из членов группы Гуго Штейнгауз как-то задал вопрос о том, можно ли расширить эту теорему на три измерения. «Можем ли мы положить кусок окорока под нож мясорезки так, чтобы мясо, жир и кости были разрезаны ровно пополам?» — спросил он. Его друг Стефан Банах доказал, что это возможно, воспользовавшись теоремой, названной именами двух других участников группы — Станислава Улама и Кароля Барсука. Впоследствии вывод Банаха получил известность под названием «теорема о бутерброде с ветчиной», поскольку он эквивалентен утверждению о том, что можно разрезать бутерброд с ветчиной поровну одним движением ножа таким образом, что каждый слой хлеба и ветчины будет разделен поровну независимо от их исходного положения и формы.
Математики, которые собирались в Шотландском кафе, записывали в толстую тетрадь все обсуждаемые во время встреч вопросы, а когда уходили домой, отдавали ее на хранение метрдотелю. Эта тетрадь, впоследствии получившая название «Шотландская книга», представляет собой уникальный продукт совместной работы, и не только из-за того, как она написана. (Эта тетрадь так и не была издана в виде книги, но некоторые из записанных в ней задач были опубликованы впоследствии в журналах.) Штейнгауз, Банах и Улам были выдающимися математиками, образовавшими самую талантливую троицу ученых, когда-либо существовавшую где бы то ни было. В 1941 году, через несколько дней после того, как Штейнгауз записал в этой тетради, как оказалось, последнюю задачу, немецкие войска оккупировали Львов. Штейнгауз, который был евреем, скрылся и пережил войну в небольшом городке возле Кракова под именем умершего лесника. В эти годы он восстановил по памяти большинство известных ему математических задач и работал над новыми, в том числе и еще над одной, связанной с едой.
Штейнгауз хотел найти самый справедливый способ разделить пирог между людьми, когда каждый стремится получить как можно больший кусок. Когда на пирог претендует всего два человека, с давних времен используется следующий подход: один режет, другой выбирает. При таком подходе тот, кто режет пирог, заинтересован разделить его на максимально равные части, поскольку если между двумя частями будет заметная разница, ему достанется меньшая часть. Штейнгауз первым решил задачу о том, как справедливо разделить пирог между тремя людьми. (Описание ее решения можно найти в Приложении 7.) После Штейнгауза математические методы разрезания пирога легли в основу целой области знаний, имеющей практическое применение в экономике и политике. Существует много разных вариантов решения этой задачи, в зависимости от того, сколько людей принимает участие в дележе пирога и как они оценивают его разные фрагменты. Один оригинальный способ, найденный в 1960-х годах, подразумевает использование движущегося ножа. Нож размещается рядом с пирогом, а затем медленно передвигается над ним. Когда кто-то выкрикнет «Стоп!», нож разрезает пирог в этом положении, а отрезанный кусок получает тот, кто первым крикнул «Стоп!». Затем нож продолжает движение, отрезая куски оставшимся претендентам.
Гуго Штейнгауза помнят за две самые распространенные пищевые метафоры в математике: теорему о бутерброде с ветчиной и справедливое разрезание пирога. Он постоянно думал о еде. К сожалению, именно еды ему не хватало на протяжении всей жизни.
Один из самых распространенных методов доказательства — доказательство от противного, когда истинность утверждения подкрепляется доводами, что в случае, если оно ложное, это приводит к противоречию. Например:
Теорема. Все числа интересны [4].
Доказательство. Предположим, это утверждение ошибочно, а значит, есть очень скучные числа. Если бы это действительно было так, существовало бы самое малое скучное число. Однако сам факт наличия такого числа делает его интересным. Другими словами, термин «самое малое скучное число» противоречит сам себе. В этом и состоит несоответствие. Это утверждение не может быть ложным, стало быть, оно должно быть истинным.
Теорема. Все числа интересны [4].
Доказательство. Предположим, это утверждение ошибочно, а значит, есть очень скучные числа. Если бы это действительно было так, существовало бы самое малое скучное число. Однако сам факт наличия такого числа делает его интересным. Другими словами, термин «самое малое скучное число» противоречит сам себе. В этом и состоит несоответствие. Это утверждение не может быть ложным, стало быть, оно должно быть истинным.
Древнегреческий мыслитель Аристотель одним из первых изучил сущность доказательства. Он разработал систему логических рассуждений, призванную определить, приводят ли истинные предпосылки к истинным выводам. Аристотель занимался философией, но все же идея о том, что истина переходит от предпосылок к выводам посредством логической дедукции, оказала значительное влияние на математику. В действительности, начиная со времен Древней Греции, математика изучает именно то, как истинные предпосылки приводят к истинным выводам через доказательства.
В III столетии до нашей эры Евклид написал «Начала», основополагающий трактат по геометрии, отличающийся характерным литературным стилем и построенный в соответствии с принципиально новой концептуальной схемой. Евклид начал с небольшого набора предполагаемых истин, или аксиом, и вывел из них все остальные истины, или теоремы. Его способ систематизации знаний обозначается термином «аксиоматический метод».
Для начинающих геометров трактат «Начала» был своего рода кулинарной книгой. В нем указан список ингредиентов: определения 26 терминов и 10 предположений, которые разрешается считать истинными, — например, о том, что между двумя точками можно провести прямую линию. Затем Евклид рассказывает о блюдах, которые намерен приготовить (теоремы), и приводит пошаговые инструкции относительно того, как это сделать (доказательства). Первая теорема касается построения «равностороннего треугольника на заданной конечной прямой», вторая — «как от данной точки провести прямую, равную данной прямой». В каждом доказательстве Евклид использует только перечисленные в начале книги предположения, и каждый очередной шаг логически вытекает из предыдущего. Метод, сводящийся к формулировке исходных предположений, после которой следует постепенное построение знаний посредством теорем и доказательств, стал стандартной схемой для всех последующих математических трудов.
В одной из самых известных теорем, изложенных в трактате «Начала», используется доказательство от противного.
Теорема. Существует бесконечно много простых чисел.
Доказательство. Во-первых, обратите внимание на следующее. Доказательство нельзя читать так же бегло, как прозу. Вполне нормально, если понадобится его перечитать несколько раз, прежде чем оно станет понятным. Во-вторых, давайте разберемся, что именно пытается сделать Евклид. Простые числа (2, 3, 5, 7, 11, 13 …) — это числа, которые больше единицы и делятся только на себя и 1. Евклид покажет нам, что, если эта теорема ошибочна, мы получим противоречие. Точнее говоря, он докажет, что при существовании конечного количества простых чисел можно создать еще одно простое число, что противоречит утверждению о том, что количество таких чисел конечно. Эта теорема не может быть ошибочной, значит, она должна быть верной.
Шаг 1. Пусть a, b, c… k — фиксированное множество простых чисел.
Шаг 2. Умножим все числа этого множества, чтобы получить число a × b × c ×… × k. Назовем это число М.
Шаг 3. Увеличим его на единицу, чтобы получить М + 1.
Шаг 4. Является ли М + 1 простым числом?
(1) Если М + 1 — простое число, то мы добились своей цели найти простое число, не входящее в исходное множество.
(2) Если М + 1 — не простое число, то должно существовать простое число p, на которое оно делится. В таком случае p — это либо одно из простых чисел исходного множества, либо нет. Если нет, у нас есть новое простое число. Если да, нам известно, что М делится на p, поскольку М делится на все числа исходного множества. Но теперь у нас возникла ситуация, когда на p делится и число М, и число М + 1, что невозможно, поскольку эти два числа разделяет только одно число — 1, которое не является простым.
Отсюда следует вывод: либо М + 1 — это новое простое число, либо М + 1 делится на новое простое число. В любом случае задача Евклида выполнена. Он доказал, что конечное множество не покрывает всю совокупность простых чисел.
В доказательстве Евклида применен принцип, который обозначается термином reductio ad absurdum — «приведение к абсурду», когда абсурдный вывод демонстрирует ошибочность предпосылки. На шаге 4 (2) абсурдный вывод состоит в том, что на p должно делиться как число М, так и число М + 1, а ошибочная предпосылка в том, что число p принадлежит конечному множеству простых чисел. В книге A Mathematician’s Apology23 преподаватель Оксфордского университета Годфри Гарольд Харди писал, что доказательство Евклида «остается таким же актуальным и значимым, как и тогда, когда оно было открыто — две тысячи лет не оставили на нем никаких следов». Это короткое и точное доказательство, не требующее никаких дополнительных концепций, кроме сложения, умножения и деления. «Приведение к абсурду, которое так любил Евклид, — один из лучших инструментов математика, — добавил Харди. — Это гораздо более эффективный прием, чем любой шахматный гамбит. Шахматист может пожертвовать пешкой или даже более значимой фигурой, а математик ставит на кон игру».
Приведение к абсурду — это также один из любимых приемов комедиантов. Ирония используется для того, чтобы добиваться все более и более абсурдных выводов, тем самым все сильнее подчеркивая нелепость исходного предположения, — этот прием известен как сатира.
На самом деле я считаю, что сформулированное Евклидом доказательство бесконечности множества простых чисел комично само по себе. Для того чтобы найти новое простое число, Евклид должен сначала создать число М, которое не только до нелепости большое, но и представляет собой точную противоположность того, что он ищет, поскольку число М делится на каждое известное простое число. Затем, прибавив наименьшее число 1, Евклид переворачивает ситуацию с ног на голову. Мельчайший дополнительный элемент расшатывает почву под ногами огромного, мегаделимого монстра М и составляющих его простых чисел, беспощадно раскрывая их ограниченность. Подобно саркастической фразе, прозвучавшей в фильме Wayne’s World («Мир Уэйна»), Евклид говорит: «Эта группа простых чисел включает в себя все числа… нет!»
В математике много шутников.
Как только мы, люди, обретаем способность держать ручку в руках, мы начинаем машинально рисовать что-то на бумаге. Самый распространенный способ — в случайном порядке начертить на листе бумаги продольные и поперечные линии и заштриховывать образовавшиеся сегменты. Этот способ особенно хорош тем, что позволяет разместить рисунок так, чтобы заштрихованные сегменты имели общие стороны только с незаштрихованными, и наоборот. Подобный тип рисунка называется двухцветным, поскольку содержит всего два цвета. Чтобы доказать, почему мы можем выполнить такой рисунок в двух цветах, необходимо ввести еще один распространенный математический инструмент — доказательство методом индукции.
В философии и эмпирической науке индукция — это принцип, который гласит, что если событие наблюдалось много раз в прошлом, то можно предположить, что оно снова произойдет в будущем. Например, Солнце восходит каждое утро с незапамятных времен. Следовательно, было бы логично предположить, что оно взойдет и завтра. Мы не можем доказать, что Солнце завтра взойдет, но можем быть уверены в этом. Однако в математике мы не можем делать какие-то предположения исключительно на основании прошлого опыта.
Рассмотрим пять кругов, представленных на рисунке ниже. В первом случае на линии окружности есть только одна точка, во втором две, в третьем три, в четвертом четыре и в пятом пять. Давайте соединим точки прямыми линиями и посчитаем, сколько секторов получилось в каждом круге. Эти круги разделены на 1, 2, 4, 8 и 16 секторов. Закономерность поразительна: это ведь последовательность, в которой каждое число в два раза больше предыдущего! Можно ли сделать предположение, что если соединить шесть точек на окружности, то количество секторов составит 32?
Подсчитайте количество секторов в каждом круге и попробуйте догадаться, что будет дальше
Категорическое НЕТ! В случае шести точек будет 31 сектор, а по мере дальнейшего увеличения количества точек на линии окружности — 57, 99, 163, 256, 386... Закономерность здесь есть, но это не последовательность, в которой каждое число в два раза больше предыдущего [5]. Ни в коем случае не следует делать выводы на основании ограниченного количества наблюдений, какими бы многообещающими эти выводы ни казались.