В начале 30-х годов ХХ века несколько молодых французских математиков пришли к выводу, что университетские учебники устарели, и решили вместе написать новые. Они взяли для своей группы псевдоним Николя Бурбаки, по имени Шарля Дени Бурбаки — французского генерала, который в 1862 году отказался от греческого престола, а после унизительного поражения во Франко-прусской войне пытался застрелиться, но промахнулся. Ученые, вошедшие в состав этой группы, заявили о том, что Николя Бурбаки родом из Полдавии — страны, которая упоминается в книге о приключениях Тинтина The Blue Lotus24 [12]. Группа приняла кодекс секретности и ввела возрастное ограничение 50 лет. Подобно польским математикам, собиравшимся в Шотландском кафе во Львове примерно в тот же период, входившие в группу Бурбаки ученые получали удовольствие, смешивая веселье и науку. Во время одной из регулярных встреч в сельской местности несколько членов группы отправились к местному озеру и, раздевшись донага, прыгали в воду с криками «Бурбаки!» [13].
Однако подход Бурбаки к математике был совершенно серьезным. Группа разработала метод написания книг, согласно которому на создание одной книги требовалось несколько лет. После долгих дискуссий по поводу содержания каждого тома кто-то из членов группы составлял черновой вариант текста книги. На следующем собрании текст вычитывался буквально построчно, причем каждую строку должны были одобрить все члены группы. Стиль изложения материала тоже был уникальным. Цель всей серии книг состояла в том, чтобы вывести все из исходных принципов, не прибегая к каким бы то ни было физическим или геометрическим интуитивным данным. Иллюстрации не использовались, поскольку члены группы считали, что они могут вводить в заблуждение. «Строгость для математика — то же самое, что мораль для человека», — сказал один из основателей группы Андре Вейль. В книгах серии не было аналогий, отступлений, опущений, рисунков или упражнений для читателей. Требование об аксиоматической чистоте было настолько жестким, что в первой книге понадобилось две сотни страниц на определение числа 1, да и то в сокращенной форме. (В книге говорится, что на представление числа 1 в расширенной форме понадобилось бы много тысяч символов. В 1999 году британский специалист по теории множеств А. Р. Д. Матиас заявил, что на самом деле метод Бурбаки требует 4 523 659 424 929 символов и 1 179 618 517 981 связей между ними [14].)
У серии книг «Начала математики» была хорошо продуманная структура. Каждая книга могла содержать ссылки только на материал предыдущих книг и не должна была ссылаться на книги других авторов, что позволяло построить огромную логическую систему на основании лишь одной теории множеств. Хотя члены группы были очень молоды, все они уже добились значительных успехов в математике и самостоятельно опубликовали ряд работ. Андре Вейль, брат философа и общественного деятеля Симона Вейля, был, пожалуй, самым талантливым членом группы. В 1939 году, когда вышла первая книга серии «Начала математики», разразилась война, и Вейль уехал в Финляндию. Полиция произвела обыск в его квартире в Хельсинки и нашла там письмо, написанное по-русски (в котором шла речь исключительно о математике), и стопку визитных карточек, принадлежащих Николя Бурбаки, члену Королевской академии наук Полдавии. После этого Вейль был депортирован по обвинению в шпионаже. По возвращении во Францию его посадили в тюрьму за то, что он не явился для прохождения службы в армии. Но Вейлю понравилось сидеть в тюрьме. «Моя математическая работа продвигается лучше, чем в самых смелых мечтах, что меня немного беспокоит, — писал он жене. — Если я могу так хорошо трудиться только в тюрьме, не придется ли мне устраивать так, чтобы каждый год попадать сюда на два-три месяца?»
Вторая книга серии «Начала математики» вышла в свет в 1940 году, а третья — в 1942-м. После перерыва по причине войны в конце десятилетия было опубликовано еще несколько томов. Поскольку прежние члены группы достигли возрастного предела, в состав группы были включены новые члены. К 1950-м годам книги Бурбаки заняли доминирующие позиции в университетской математике во Франции и сохраняли за собой этот статус на протяжении следующих двух десятилетий. Эта математическая «секта» начала напоминать мафию, поскольку ее действующие и бывшие члены (в том числе ряд самых блестящих французских математиков) занимали высшие должности в университетах. После перевода книг Бурбаки на английский язык они оказали существенное влияние и на англоязычный мир.
Лучшее время для группы Бурбаки наступило в период эскалации холодной войны. Правительства стран Запада осознали, что им необходимо полностью изменить систему преподавания естественно-научных дисциплин, для того чтобы не отставать от Советского Союза, только что запустившего в космос первый спутник [15]. Идеология бурбакизма, гласившая, что абстрактные формальные системы важнее интуиции и решения задач, просочилась из университетов в школы. Политики и представители системы образования решили, что ответом на красную угрозу станет включение теории множеств в учебную программу. Преподавание математики было реорганизовано, в результате чего поколение школьников 1960-х и 1970-х годов изучало «новую математику» в лице теории множеств.
Со временем влияние Бурбаки в университетских аудиториях и школьных классах ослабло. Например, такие области исследований, как фракталы, полностью зависят от компьютеров и визуального отображения, поэтому пристрастие Бурбаки к структуре устарело. За последние десятилетия математика развивалась благодаря взаимодействию с другими науками, а не за счет самоизоляции от них. В итоге школьникам больше не преподают теорию множеств. Однако вопреки сообщениям о кончине Николя Бурбаки, которому скоро исполнится восемьдесят лет, он живет и здравствует.
Сейчас ядро группы состоит из пяти математиков. Я встретился с одним из них в кафе у Люксембургского сада в Париже. Кодекс секретности по-прежнему действует, поэтому мне разрешили рассказать только о том, что этот член группы носит бороду и был одет в рубашку пурпурного цвета и соломенную шляпу. Кроме того, он выдающийся ученый, известный профессор. Я спросил, сколько людей знают о его участии в группе Бурбаки. «Большинству моих коллег это хорошо известно, но я не признал бы этого. Многие не принимают наши идеи, — сказал он. — Некоторые заявляют, что группа Бурбаки бесполезна и должна прекратить свою деятельность».
Последняя книга из серии «Начала математики», посвященная алгебре, вышла в свет в 2012 году, а новая (о топологии) готовится к публикации в настоящее время. Группу Бурбаки обвиняют в том, что ее пристрастие к строгости фактически нанесло ущерб французской математике. Книги, публикуемые группой, трудны для восприятия, а значит, их нельзя эффективно использовать в качестве учебных пособий. Кроме того, они не оставляют места для творчества и интуиции. «Даже мои ближайшие коллеги убеждены в том, что это не те книги, которые нужны нынешним математикам», — признался мне человек в пурпурной рубашке. Я спросил его, согласен ли он с этим мнением. «Ответ неочевиден. Очевидно лишь то, что такая работа — когда мы собираемся все вместе, вычитываем строку за строкой и каждый имеет возможность высказать свои возражения и исправить ошибки — позволяет получить в итоге нечто особенное и, будем надеяться, стоящее. Идеи, изложенные в этих книгах, — это совокупный продукт многих людей. Математики не могут делать все исключительно своими силами».
Я спросил, не считает ли он устаревшим тот уровень строгости, которого придерживаются бурбакисты. «Думаю, такая строгость уместна сейчас даже в большей мере, чем раньше, — ответил он. — Существует разница между строгостью и сухостью. Мы стараемся быть строгими, но не сухими». В действительности этот член группы уверен в том, что современные университетские учебники кое-чем обязаны Бурбаки. «Сейчас признание того, что доказательство не является достаточно строгим по стандартам книги, — общепринятая практика. В каком-то смысле тот уровень строгости, которого придерживаются математики, именно такой [как у Бурбаки]». В то же время этот член группы согласен с критическими замечаниями в адрес первой книги. «Некоторые книги Бурбаки — просто хорошие. Некоторые чрезвычайно хорошие. Но теория множеств — полная ерунда». Когда я напомнил ему о том, как группа Бурбаки определяет единицу, было заметно, что ему неприятно об этом говорить. «Эта часть не выдерживает критики. Не нужно знать, что такое единица. Нужно знать, что можно делать с единицей».
Тем не менее мой собеседник сказал, что очень гордится членством в группе Бурбаки. Ему тридцать лет, и он как раз стал профессором, когда получил первое приглашение от Николя Бурбаки присутствовать на следующем собрании, которое предполагалось провести в шато у Луары. Он объяснил, что большинство математиков принимают такие приглашения, хотя немногочисленные женщины, получившие его, ответили отказом. Сейчас, будучи полноправным членом группы, этот человек считает своим историческим долгом помочь ей завершить ту работу, ради которой она была создана, — довести до конца публикацию книг серии «Начала математики». Запланировано выпустить четыре последние книги серии. Мой собеседник понимает, что эти книги вряд ли увидят свет до того, как ему исполнится пятьдесят лет и он выйдет из состава группы. Но он считает, что возрастное ограничение — это хорошо, поскольку поддерживает жизнеспособность группы.
Тем не менее мой собеседник сказал, что очень гордится членством в группе Бурбаки. Ему тридцать лет, и он как раз стал профессором, когда получил первое приглашение от Николя Бурбаки присутствовать на следующем собрании, которое предполагалось провести в шато у Луары. Он объяснил, что большинство математиков принимают такие приглашения, хотя немногочисленные женщины, получившие его, ответили отказом. Сейчас, будучи полноправным членом группы, этот человек считает своим историческим долгом помочь ей завершить ту работу, ради которой она была создана, — довести до конца публикацию книг серии «Начала математики». Запланировано выпустить четыре последние книги серии. Мой собеседник понимает, что эти книги вряд ли увидят свет до того, как ему исполнится пятьдесят лет и он выйдет из состава группы. Но он считает, что возрастное ограничение — это хорошо, поскольку поддерживает жизнеспособность группы.
Теория множеств — это один из подходов к построению основы для математики. Другой подход находится сейчас в процессе формирования и подразумевает использование компьютеров. Система для проверки доказательств — это элемент программного обеспечения, проверяющий правильность логических выводов, имеющихся в доказательстве [16]. Хотелось бы верить, что когда-нибудь компьютеры смогут доказать любое математическое утверждение [17]. Если вы захотите убедиться в том, что теорема верна, вам будет достаточно просто нажать кнопку.
Первой крупной теоремой, доказанной с помощью компьютера, стала теорема о четырехцветной карте, или теорема о четырех красках. Мы с вами уже удостоверились, что любой машинальный рисунок может быть двухцветным, другими словами, что мы можем заштриховать его фрагменты так, чтобы две смежные области всегда были разных цветов. В 1852 году проживающий в Лондоне выходец из Южной Африки Френсис Гатри раскрашивал карту графств Англии. Он обнаружил, что для раскраски карты таким образом, чтобы соседние графства имели разные цвета, достаточно четырех красок. Эксперименты показали, что четырех цветов хватает и для того, чтобы раскрасить так любую карту. Однако больше столетия никто не мог это доказать, пока в 1976 году Кеннет Аппел и Вольфганг Хакен из Иллинойского университета не сделали это, воспользовавшись суперкомпьютером для проверки всех вероятных конфигураций карт. Математики отреагировали неоднозначно [18]. В принципе должна существовать возможность проверить каждую строку доказательства. Но компьютер выполнил слишком большой объем вычислений, для того чтобы можно было их все проверить, а это противоречило эталону доказательства теорем, использовавшемуся со времен Евклида. Однако помимо сугубо философских возражений против такого метода доказательства теорем существовали и другие претензии практического плана. В программах всегда есть ошибки. Разве могли Аппел и Хакен быть полностью уверены в том, что в их программе их нет? Нет, не могли. На самом деле в их доказательстве до сих пор находят новые компьютерные ошибки, хотя все обнаруженные ошибки были исправлены. В 1995 году группа исследователей Принстонского университета составила усовершенствованное компьютерное доказательство теоремы о четырехцветной карте. А в 2004 году Джордж Гонтье из исследовательской лаборатории компании Microsoft в Кембридже (Англия) проверил его с помощью специальной программы, определяющей корректность доказательств, хотя для этого ему пришлось перевести все концепции на специальный язык программирования, который понимала эта программа. Но тогда возникает следующий вопрос: разве можно быть уверенным в том, что такая программа-помощник не содержит ошибок? Нет, полной уверенности в этом нет, однако ее уровень все же выше, чем в случае исходных доказательств, поскольку эта программа была многократно протестирована при выполнении многих других задач. В настоящее время доказательство теоремы о четырех красках — одно из наиболее тщательно проверенных в математике.
После первоначального сопротивления автоматизированным доказательствам теорем со временем большинство математиков все же приняли их. Некоторые даже мечтают о том, что однажды все теоремы будут переведены на универсальный компьютерный язык для проверки доказательств, что позволит создать гигантскую формализованную систему, содержащую все доказуемые математические знания, в которой каждое утверждение строго выводится из совокупности базовых строк компьютерного кода. Когда это произойдет, мы все должны, раздевшись донага, прыгнуть в озеро с криками «Бурбаки!».
Компьютеры изменили ход доказательства теорем. Кроме того, они стали катализатором для формирования новой, захватывающей области математики.
10. Соседи по клеткам
В промозглый лондонский день я отправился на встречу с одним человеком, чтобы поговорить о космических кораблях. Пол Чэпмен сидел на террасе итальянского ресторана в темном пальто, а его панама сияла оранжевым цветом под излучением инфракрасного обогревателя. Темные брови нависали над большими очками без оправы, а лицо заросло взлохмаченной седой бородой. Пол принадлежит к единственной в своем роде группе людей, увлекающихся математической игрой под названием Game of Life («Жизнь»). Ему не терпелось рассказать мне о своем последнем открытии.
«Новость, достойная газетной статьи, — заявил Пол, вынимая из кармана черную записную книжку и разворачивая истрепанный лист бумаги. — Я ношу это с собой повсюду». Игру «Жизнь» изобрел сорок лет назад молодой преподаватель Кембриджского университета Джон Конвей, разработавший законы вымышленной вселенной, согласно которым конфигурации клеток квадратной решетки эволюционируют и мутируют самыми завораживающими и непредсказуемыми способами. Сейчас в этой вселенной существуют такие фигуры, как «фитили», «ружья», «паровозы» и «космические корабли». На листике Пола было изображение космического корабля «Джемини», состоящего почти из миллиона крохотных клеток и представляющего собой одну из самых крупных и сложных фигур, когда-либо построенных в игре «Жизнь». «Джемини» напоминал ромбовидный алмаз, образованный из нескольких «елочных» шаблонов. Пол нетерпеливо показывал на разные фрагменты этого корабля, объясняя, почему он такой особенный. «Джемини» — это первая самовоспроизводящаяся фигура, которая способна построить свою точную копию. Этот космический корабль живой. В конце концов жизнь породила жизнь. «Это удивительно, — воскликнул Пол. — За сорок лет мы еще не видели ничего подобного».
Мысль о том, что математическая квадратная решетка позволяет создать конфигурацию, достойную серьезных размышлений, восходит как минимум к так называемому решету Эратосфена, названному так по имени древнегреческого ученого-энциклопедиста, который, как мы с вами знаем, сделал первую достаточно точную оценку размеров Земли. Решето Эратосфена — это алгоритм поиска простых чисел. Мы начинаем отсчет по возрастанию с 1 и, достигнув первого подходящего числа, удаляем из списка все числа, кратные данному числу. (Этот метод очень похож на подход Джерри Ньюпорта, человека с синдромом гения, о котором шла речь в главе 1.) Первое простое число — 2, поэтому мы должны вычеркнуть из списка все четные числа. Второе простое число — 3, поэтому нам необходимо вычеркнуть все числа, кратные трем. Число четыре уже было вычеркнуто, поскольку оно четное, а значит, следующее простое число — 5 и т. д.
Решето Эратосфена для чисел от 1 до 100 можно представить в виде сетки с шестью рядами, как показано на рисунке ниже. Горизонтальные линии, проведенные по ряду после числа 2, а также по рядам, начинающимся с чисел 4 и 6, вычеркивают все четные числа, а линия после числа 3 — числа, кратные 3. Два набора диагональных линий вычеркивают числа, кратные 5 и 7. Больше никаких линий не нужно, поскольку, если в поисках простых чисел вы просматриваете список до числа n, вам нужно искать числа, кратные простым числам, которые не превосходят значения √n [1]. В данном случае n = 100, поэтому мы можем прекратить поиск чисел, кратных простым, как только доберемся до числа 10.
Решето Эратосфена
Это очень красивая и наглядная решетка, так как она сразу же говорит вам, что все простые числа должны находиться в первом и пятом рядах, а значит, они все либо на единицу больше, либо на единицу меньше числа, кратного 6. Однако самый важный момент, на который необходимо обратить внимание, — это причина, вынуждающая нас отсеивать числа: простые числа не появляются в каком-либо предсказуемом порядке. Если бы мы продолжили строить эту решетку до бесконечности, они были бы разбросаны в случайном порядке по первому и пятому рядам. Тот факт, что простые числа настолько легко найти, но их распределение столь непредсказуемо, — одна из самых ранних и наиболее непостижимых неожиданностей в математике.