Один
Независимое, сильное, честное, храброе, понятное, одинокое
Два
Осмотрительное, мудрое, красивое, ранимое, открытое, доброжелательное, спокойное, чистое, гибкое
Три
Динамичное, теплое, дружелюбное, коммуникабельное, напыщенное, мягкое, раскованное, претенциозное
Четыре
Вальяжное, нестандартное, основательное, надежное, многогранное, прагматичное, представительное
Пять
Уравновешенное, важное, остроумное, толстое, властное (но не слишком), счастливое
Шесть
Жизнерадостное, чувственное, уступчивое, мягкое, сильное, храброе, искреннее, смелое, скромное
Семь
Магическое, непреложное, умное, неуклюжее, самонадеянное, мужественное
Восемь
Мягкое, женственное, доброе, рассудительное, упитанное, основательное, чувственное, притягательное, одаренное
Девять
Спокойное, ненавязчивое, беспощадное, не имеющее принадлежности к какому-либо полу, профессиональное, мягкое, великодушное
Десять
Прагматичное, логичное, опрятное, обнадеживающее, честное, выносливое, простодушное, рассудительное
Одиннадцать
Вероломное, способное подражать звукам, благородное, мудрое, простодушное, дерзкое, выносливое, элегантное
Двенадцать
Податливое, героическое, величественное, крепкое, покладистое, бесконфликтное
Тринадцать
Неуклюжее, неустойчивое, творческое, честное, загадочное, нелюбимое, «темная лошадка»
Не нужно быть голливудским сценаристом, чтобы распределить роли так: мистер Один — отличный романтический персонаж, мисс Двойка — классическая главная героиня. Хотя этот список кажется нелепым, все же в нем есть определенный смысл. Кроме того, в нем видны прочно укоренившиеся ассоциации единицы с мужскими качествами, а двойки — с женскими.
Участие в интернет-опросе было абсолютно добровольным, а это значит, что большинство респондентов испытывали сильную эмоциональную привязанность к тем или иным числам. Ну а что же можно сказать обо всех остальных?
Возьмем в качестве примера число 44.
Вам оно нравится? Не нравится? Вы к нему равнодушны?
Дэн Кинг и Крис Янишевски, с которыми мы уже встречались во время обсуждения шампуня Zinc 24, провели эксперимент, в ходе которого респонденты должны были высказать свое отношение к каждому числу от 1 до 100: нравится им оно, не нравится, или они не испытывают к нему никаких эмоций [26]. Затем был составлен рейтинг чисел этой группы в порядке снижения их популярности.
Как показали результаты эксперимента, такую постановку вопроса нельзя считать неуместной. Наши симпатии по отношению к числам подчиняются четкой закономерности, что прекрасно видно на теплокарте, где числа от 1 до 100 представлены квадратами. (В верхнем ряду квадратов сетки находятся числа от 1 до 10, во втором ряду — от 11 до 20 и т. д.) Черными квадратами обозначены числа, получившие наибольшее количество голосов (первые двадцать позиций в рейтинге); белыми — «самые нелюбимые» числа (последние двадцать позиций в рейтинге); числа с промежуточными результатами представлены квадратами разных оттенков серого.
На этой теплокарте прослеживаются четкие тенденции. Черные квадраты сосредоточены главным образом в верхней части сетки, а это говорит о том, что в среднем люди отдают предпочтение небольшим числам. Диагональ с наклоном влево показывает, что двузначные числа с двумя одинаковыми цифрами тоже вызывают у людей симпатии: мы любим закономерности. Однако самое удивительное то, что четыре белых столбца свидетельствуют о непопулярности чисел, заканчивающихся на 1, 3, 7 и 9. Как уже упоминалось выше, Кинг и Янишевски считают, что числа, представляющие собой результат простых арифметических операций (например, числа, которые встречаются в таблице умножения), более узнаваемы и легче обрабатываются мозгом, поэтому они больше нравятся людям. Все без исключения четные числа и числа, заканчивающиеся на 5, делятся без остатка, тогда как многие числа, заканчивающиеся на 1, 3, 7 и 9, ни на что не делятся.
В ходе аналогичного исследования Маришка Миликовски из Амстердамского университета предложила участникам оценить числа от 1 до 100 по трем критериям: хорошие — плохие, тяжелые — легкие, возбудимые — спокойные [27]. Когда опрашиваемых попросили спроецировать на числа те или иные свойства, не имеющие отношения к математике, ответы и на этот раз оказались на удивление обоснованными. Я представил результаты данного эксперимента в виде теплокарт.
Здесь тоже отчетливо видны определенные закономерности. Белые столбцы сетки «Хорошие — плохие числа» показывают, что респонденты считают самыми плохими числа, заканчивающиеся на 3, 7 и 9, — что неудивительно, поскольку мы уже убедились, что такие числа нравятся людям меньше всего. В случае оценки по шкале «Тяжелые — легкие числа» основная масса черных квадратов сосредоточена в нижней части сетки; это говорит о том, что чем больше число, тем более тяжелым оно кажется. В сетке «Возбудимые — спокойные числа» закономерность не сразу бросается в глаза, но если присмотреться внимательно, то становится очевидным, что столбцы, соответствующие нечетным числам, гораздо темнее столбцов с четными числами. Следовательно, нечетные числа считаются возбудимыми, тогда как четные — спокойными. Мы легко проецируем на числа нематематические свойства, отображающие количественные характеристики чисел, особенно их величину и кратность.
Предпоследняя сетка — это теплокарта рейтинга чисел, составленного по результатам интернет-опроса, на которой 20 самых популярных чисел представлены черными квадратами и т. д. Последняя сетка отображает результаты еще одного интернет-опроса, в ходе которого я предложил участникам в произвольном порядке выбрать число от 1 до 100. Здесь двадцать самых популярных чисел тоже представлены черными квадратами. Интересно, что эти две теплокарты очень похожи друг на друга: когда нас просят назвать понравившееся число, а также первое число, пришедшее нам в голову, мы склонны называть одни и те же числа. Как ни странно, в большинстве случаев наши любимые числа не совпадают с числами, которые нам нравятся или которые мы считаем самыми хорошими. Симпатия и любовь — разные вещи.
Эти теплокарты сразу же напомнили мне о Джерри Ньюпорте — чемпионе мира по устному счету и бывшем таксисте, с которым я встречался в Аризоне. Джерри рассказывал, что когда он видит четырех- или пятизначное число, то сразу же «отсеивает» простые числа. Другими словами, сначала Джерри определяет, делится ли это число на 2, затем на 3, а потом на 5, 7, 11 и т. д., чтобы найти его простые делители.
Например:
2761 = 11 × 251
2762 = 2 × 1381
2763 = 3 × 3 × 307
Благодаря этим теплокартам я понял, что мы действительно отсеиваем простые числа. Ниже представлены те же теплокарты, но в них простые числа отмечены звездочками. Они и впрямь похожи на решето! В теплокартах «Самые любимые числа» и «Хорошие — плохие числа» простые числа почти всегда попадают в белые квадраты, как будто проваливаются через отверстия в металлической сетке. Напротив, в теплокартах «Возбудимые — спокойные числа», «Самые любимые числа» и «Произвольно выбранные числа» простые числа обозначены черными и серыми квадратами. Эти сетки напоминают решето, предназначенное для вылавливания простых чисел. Следовательно, простые числа — это очень важный элемент внутренних представлений о числах, причем не только для таких гениев, как Джерри Ньюпорт, но и для всех нас. Наш мозг всегда настроен на восприятие арифметических истин.
Числа атакуют нас постоянно. Они взывают к нам с часов, телефонов, газетных страниц, компьютерных мониторов, дорожных знаков, этикеток, автобусных остановок, адресов, номерных знаков, рекламных щитов, книг и постоянно воздействуют на наши нейроны. Внимательно присмотревшись к ним, мы обнаруживаем удивительные закономерности.
Теплокарты, на которых простые числа отмечены звездочками
2. Длинный хвост закона
В 1085 году Вильгельм Завоеватель приказал провести в Англии перепись. Он хотел знать, сколько людей живет на его землях, кто эти люди, какое у них имущество, какой доход они получают и, что самое главное, какие налоги должны платить. Он разослал своих представителей по всему королевству, и его приказ был выполнен настолько тщательно, что в летописи Anglo-Saxon Chronicle («Англосаксонские хроники») появилась запись: «Ни одного быка, ни одной коровы и ни одной свиньи не осталось неучтенной».
2. Длинный хвост закона
В 1085 году Вильгельм Завоеватель приказал провести в Англии перепись. Он хотел знать, сколько людей живет на его землях, кто эти люди, какое у них имущество, какой доход они получают и, что самое главное, какие налоги должны платить. Он разослал своих представителей по всему королевству, и его приказ был выполнен настолько тщательно, что в летописи Anglo-Saxon Chronicle («Англосаксонские хроники») появилась запись: «Ни одного быка, ни одной коровы и ни одной свиньи не осталось неучтенной».
Книга с результатами этой переписи известна под названием Doomsday Book («Книга Судного дня»). Это самый ранний источник сведений о населении Англии, первый в западном мире крупный сборник статистических данных и настоящая находка для историков, специалистов по генеалогии и лексикографов. Движимый желанием узнать, скрыты ли в этой книге математические тайны, я приступил к изучению первого раздела, посвященного графству Кент [1].
В самом начале говорилось о том, что город Дувр заплатил 18 фунтов налога, из которых две части ушло королю Эдуарду, а третья — графу Гудвину. Жители Дувра дали королю 20 кораблей на 15 дней с экипажем в количестве 21 человека на каждом судне.
Поскольку меня интересовали исключительно числа, я выделил из этого абзаца следующий список: 18, 2, 20, 15 и 21 — и мне сразу же кое-что бросилось в глаза. Посмотрите на первую цифру каждого числа: 1, 2, 2, 1 и 2. Только единицы и двойки, самые маленькие цифры. Любопытно, не правда ли? По всей вероятности, да. Но все же выборка была слишком мала, чтобы делать какие-то выводы. Я прочитал книгу до конца, отмечая первые цифры каждого числа, которое мне встречалось. Преобладание единиц и двоек наблюдалось по всей книге. Да, тройки, четверки и другие цифры тоже присутствовали, но гораздо реже. Я был просто поражен тем, насколько чаще числа начинаются с маленьких цифр, чем с больших.
Я насчитал уже 182 числа, когда мне впервые попалась на глаза девятка. Она обозначала количество крестьян, подчинявшихся Вульфстану, сыну Вульфвина из Шепердсуэлла. К тому времени я насчитал 53 числа, начинающихся с цифры 1, 22 — с цифры 2, 18 — с цифры 3 и 15 — с цифры 4. Посмотрите на эти числа еще раз: в них тоже прослеживается четкая закономерность. Числа с цифрой 1 в начале встречаются чаще, чем с цифрой 2, последняя, в свою очередь, чаще, чем с цифрой 3, и т. д., вплоть до чисел с цифрой 9 в начале, которых меньше всего.
Мне было понятно, почему единица попадалась так часто. Королевские посланцы, проводившие перепись, переходили от одного жилища к другому, пересчитывая людей, домашний скот и инвентарь. В хозяйствах, которые вспахивали свои земли, было, как правило, по одному плугу — отсюда и такая высокая повторяемость единицы. Однако это не объясняло невероятно устойчивого снижения частотности чисел по мере увеличения их первых цифр, особенно когда этими числами обозначались самые разные объекты в самых разных количествах — например, 40 000 сельдей, подаренных монахам в Кентербери, или 27 соляных приисков в Милтон-Реджисе.
Возможно, это свойственно только тем давним временам. Я закрыл «Книгу Судного дня» и перенес свои исследования на 800 лет вперед, оказавшись в Лондоне викторианской эпохи.
Двенадцатого марта 1881 года на первой странице газеты The Times были опубликованы такие объявления: владелец 25-тонной шхуны ищет джентльмена, который согласится отправиться вместе с ним в южные моря; временный приют для бездомных собак в Баттерси приглашает людей, желающих купить домашнее животное, посмотреть 500–700 своих обитателей; Сэмюел Брэндрем сообщает, что его шекспировские чтения состоятся в четверг, в 3 часа дня, по адресу Старая Бонд-стрит, 33 — забронировать места можно за 5 шиллингов.
Я подсчитал частотность первых цифр (также именуемых ведущими цифрами) во всех числах, которые нашел на первой полосе The Times. Числа с цифрой 1 в начале и на сей раз встречались чаще всего, в отличие от цифры 9, занимавшей в этом рейтинге последнюю позицию. Хотя жизнь в XIX столетии существенно отличалась от жизни в XI веке, первые цифры чисел, отражавших социальную статистику, вели себя практически одинаково.
Такую же закономерность можно найти на страницах любой современной прессы. Попробуйте сделать это сами! Этот простой трюк можно показывать на вечеринке; его также любят демонстрировать фокусники в пабах. Посчитайте первые цифры — и увидите, что их частотность неизменно снижается: числа, начинающиеся с цифры 1, встречаются чаще всего; затем следуют числа, первая цифра которых 2, потом 3 — и т. д. до цифры 9, которая используется в начале чисел реже всего.
Это действительно невероятно. Большинство людей просто не поверят вам, пока вы не подсчитаете цифры. На интуитивном уровне нам кажется, что числа, указанные в газетах, не могут вести себя столь упорядоченно, особенно учитывая тот факт, что они произвольно взяты из огромного количества самых разных источников. Тем не менее, о каких бы числах ни шла речь — о результатах спортивных соревнований, ценах акций или количестве погибших, — уверяю вас: цифра 1 в начале чисел будет встречаться чаще, а цифра 9 — реже всего.
Этот вывод представляется нам несколько неожиданным, так как мы интуитивно предполагаем, что все числа имеют равные шансы на появление. Безусловно, если поместить в ящик 999 шариков для пинг-понга, пронумерованных от 1 до 999, и извлекать их в произвольном порядке, то вероятность выбора любого числа с определенной цифрой в начале составляет одну девятую, или 11 процентов. Другими словами, у всех цифр в этом случае одинаковые перспективы. Однако очевидно и то, что в газетах первые цифры чисел ведут себя абсолютно иначе: они распределены по явно выраженному асимметричному закону.
Тенденцию к преобладанию чисел, начинающихся с единицы, впервые заметил американский астроном канадского происхождения Саймон Ньюком [2]. В 1881 году он опубликовал в журнале American Journal of Mathematics краткую заметку, в которой объяснял, что выявил данную особенность благодаря книгам с логарифмическими таблицами. Первые страницы с таблицами логарифмов для чисел, начинающихся с цифры 1, всегда были более истрепаны, чем страницы с таблицами для чисел, начинающихся с цифры 9. Подобный феномен уж точно не объяснишь тем, что исследователи якобы внимательно читали первые страницы книги, а затем теряли к ней интерес из-за отсутствия захватывающего сюжета. Здесь причина в другом: они чаще сталкивались в работе с числами, начинающимися с единицы. Ньюком предположил, что частотность первых цифр чисел, выраженная в процентах, примерно такова.
Частота наличия цифры 1 в начале чисел составляет 30,1 процента, цифры 2 — 17,6 процента, цифры 3 — 12,5 процента, причем этот показатель стремительно падает по мере увеличения цифры: шанс встретить цифру 1 в начале чисел в семь раз превышает подобную вероятность по отношению к цифре 9.
Ньюком рассчитал эти показатели с помощью логарифмов. Он утверждал, что вероятность появления цифры d в начале числа определяется по формуле: log(d + 1) – log d. (В Приложении 1 я объясню ее суть.) Однако он не смог четко обосновать ее, поэтому привел вместо этого неформальный аргумент, просто представив его как некую любопытную тенденцию.
Более чем полвека спустя, в 1938 году, физик из General Electric Фрэнк Бенфорд заново открыл феномен первой цифры, тоже обратив внимание на потрепанность страниц в книгах с таблицами логарифмов (по всей вероятности, он не знал о статье Ньюкома) [3]. Однако Бенфорд проанализировал эту закономерность не только на основании книг с логарифмами. Он изучил распределение первых цифр исходя из таких данных, как население городов США, адреса первых нескольких сотен людей из биографического справочника американских ученых American Men of Science, атомный вес химических элементов, площадь бассейна рек и статистика бейсбольных матчей. В большинстве случаев результаты были близки к ожидаемому распределению. Наверное, было очень интересно наблюдать за тем, как одна и та же последовательность возникает в самых разных ситуациях. Разумеется, полученные показатели не были в точности такими, как представленные выше проценты (в реальном мире подобной точности нет). Тем не менее в целом они почти полностью совпадали с прогнозируемыми значениями, отклоняясь от них не более чем на несколько десятых процента. В настоящее время закон Бенфорда нашел свое подтверждение в самых разных областях, в том числе в естествознании, финансах, экономике и вычислительной технике. Этот закон гласит: в любом множестве данных о естественных произвольных процессах, включающем в себя величины нескольких порядков, частота появления цифры 1 в качестве первой значащей цифры составляет около 30 процентов, цифры 2 — около 18 процентов и т. д. Бенфорд считал, что этот феномен отражает универсальный закон, который он обозначил термином «закон аномальных чисел». Но термин не прижился, и открытие получило известность под названием «закон Бенфорда».