В начале своего увлечения геодезическими знаками Роб раз в две недели устраивал экспедицию, уезжая из дома в пятницу вечером и возвращаясь в понедельник утром. Геодезические знаки размещены приблизительно в 5 километрах друг от друга, поэтому, действуя оперативно, Боб мог обойти примерно 50 знаков за одни выходные. При удачном стечении обстоятельств эти сооружения располагались у обочины дороги, где он мог припарковать автомобиль. Однако в большинстве случаев геодезические знаки находились вдали от дорог или пешеходных троп и были скрыты в зарослях можжевельника, куманики и прочих колючих кустов. Для того чтобы не возвращаться на работу с ободранными до крови руками, Боб стал брать с собой садовые ножницы.
Геодезические знаки — это реликвии нашего технологического наследства, такие же элементы ландшафта, как средневековые крепости или прямые римские дороги. Робу нравится их коллекционировать, поскольку благодаря этому он путешествует по красивым местам, удовлетворяя свою тягу к приключениям и получая от этого огромное удовольствие. Он совершал ночные переходы по фермерским полям, побывал на страусиной ферме и потратил три года на переговоры с одним землевладельцем, чтобы добиться у него разрешения посмотреть геодезический знак, расположенный на его земельном участке. Мне тоже нравятся геодезические знаки. Они олицетворяют собой величие треугольника — фигуры, которая изменила мир.
Числа появились около 8000 лет назад, а математика возникла в Египте примерно в 600 году до нашей эры.
Все началось с публичной демонстрации способа измерения высоты пирамид. Греческий мыслитель Фалес показал, как определить высоту Великой пирамиды в Гизе, не взбираясь на нее. Сначала он установил на земле шест, который вместе с тенью образовал две стороны треугольника, как показано на представленном ниже рисунке. Пирамида со своей тенью тоже создавала треугольник. Гениальность Фалеса состояла в том, что он понял: хотя эти два треугольника существенно разнятся по размерам, у них одинаковая форма, поскольку солнечные лучи падают параллельно друг другу. Это означало, что на основании высоты маленького треугольника можно рассчитать высоту большого. Если говорить в современных терминах, Фалес понял следующее:
Высоту шеста и длину его тени измерить не составляет труда. Расстояние от центра основания пирамиды до конца ее тени измерить непосредственно нельзя, поскольку этому мешает сама пирамида [2]. Возможно, прежде чем делать расчеты, Фалес подождал, когда солнечные лучи будут направлены перпендикулярно грани пирамиды, так как в этот момент расстояние от центра пирамиды до ее грани равно половине длины стороны пирамиды. Учитывая, что в приведенном выше уравнении три значения были известны, Фалес смог вычислить оставшееся значение — высоту пирамиды.
Параллельные лучи солнца образуют два подобных треугольника: один создан пирамидой, а другой — шестом
Открытие Фалеса стало крохотным шагом для тригонометрии, науки о треугольниках, и огромным скачком для человечества. По мнению ученого, способ определять размер объекта логически вытекал из его свойств [3]. Это отличало мышление Фалеса от мышления египтян, которые проявляли выдающиеся способности в практических областях (таких как строительство пирамид), но при этом их математические знания значительно ограничивались эмпирическими правилами и треугольниками, существующими в реальной жизни. В расчетах Фалеса был задействован треугольник, являющийся абстракцией реальности, образованной солнечными лучами. Идеи Фалеса положили начало греческому рациональному мышлению, которое мы считаем основной западной математики, философии и науки.
Имя Фалеса также носит еще одно его открытие — теорема Фалеса, которая гласит, что треугольник, вписанный в полукруг, всегда прямоугольный [4] 10. Кроме того, воспользовавшись дедуктивным методом, Фалес предсказал солнечное затмение 585 года до нашей эры, а также повышение урожайности оливковых деревьев в его родном городе Милете после нескольких неблагоприятных лет. Он скупил все оливковые маслобойни, какие только смог, по самым низким ценам и разбогател во время небывалого урожая оливок. Столетие спустя древнегреческий комедиограф Аристофан подшутил над великим мудрецом, введя в одну из пьес сцену, где Фалес упал в канаву, в задумчивости рассматривая звезды. Фалеса помнят не только как первого в истории математика и философа, но и как первого самого рассеянного ученого.
Во время устроенного в Гизе представления Фалес продемонстрировал, как посредством треугольника измерить расстояние от ближней точки до дальней без физического перемещения в дальнюю точку. Впоследствии треугольники стали использовать для измерения гораздо больших расстояний, чем высота пирамиды, что полностью изменило такие науки, как астрономия, навигация и картография. Но об этом мы поговорим позже. Иногда огромные расстояния можно измерить, просто понаблюдав за тенью, отбрасываемой вертикально установленным шестом в солнечный день. Спустя три столетия после того, как Фалес с помощью шеста и дедуктивной логики произвел впечатление на фараона, Эратосфен применил тот же метод для получения первой реалистичной оценки окружности Земли.
Эратосфен жил в Александрии, столице эллинистического Египта, где возглавлял крупнейшую в то время знаменитую Александрийскую библиотеку. Там же, в Александрии, он измерил угол падения солнечных лучей у верхушки вертикального шеста в полдень летнего солнцестояния. Оказалось, что этот угол составляет примерно пятидесятую часть полного круга. Эратосфену было известно, что в Сиене, самом южном городе Египта, есть знаменитый колодец, дно которого полностью освещается в полдень летнего солнцестояния, то есть в это время в этом месте Солнце совсем не отбрасывает тень. На основании этих двух фактов Эратосфен сделал вывод, что расстояние от Александрии до Сиены должно составлять пятидесятую часть окружности Земли.
Эратосфен рассуждал так. Во-первых, в то время уже знали, что Земля круглая: люди видели, что корабли уходят за горизонт, а Земля отбрасывает изогнутую тень на Луну во время лунного затмения. Во-вторых, Эратосфену было известно, что Сиена находится строго на юг от Александрии. С учетом этих двух фактов он смог нарисовать представленную ниже схему, на которой изображено поперечное сечение земного шара с севера на юг, проходящее через Александрию и Сиену, в полдень летнего солнцестояния. В этот момент солнечные лучи направлены через Сиену прямо в центр Земли, а в Александрии падают на шест под углом. Поскольку шест установлен вертикально, он также должен указывать на центр земного шара. Следовательно, можно нарисовать абстрактную геометрическую схему (рисунок справа), на которой параллельные линии изображают солнечные лучи, а пересекающая их линия проходит от вершины шеста к центру Земли.
В полдень летнего солнцестояния Солнце не отбрасывает тень в Сиене, но отбрасывает тень от шеста, установленного в Александрии. Угол, который образуют солнечные лучи с шестом, равен углу от центра Земли к этим двум городам
Одна из основных теорем греческой геометрии гласит, что лежащие накрест углы равны, а это значит, что линия, пересекающая две параллельные прямые, образует с ними равные углы. Следовательно, угол, который образует с лучами шест, равен углу в центре Земли. Эратосфен определил, что построенный шестом угол составляет пятидесятую часть полного круга, стало быть, и угол в центре Земли такой же. Получается, расстояние от Александрии до Сиены составляет одну пятидесятую окружности земного шара.
Выходит, что для того, чтобы вычислить окружность Земли, Эратосфену следовало просто умножить расстояние от Александрии до Сиены на пятьдесят. У греков уже была достаточно точная оценка этого расстояния — 5000 стадиев: его измерили бематисты (землемеры), шагомеры, определяющие расстояние и маршрут. (Эратосфену как создателю географии судьба подарила три географических факта, без которых его измерения были бы невозможны: египтяне расселились вплоть до Сиены, находящейся на Тропике Рака — самой северной широте, где Солнце не отбрасывает тень по крайней мере один раз в год; Сиена расположена строго на юг от Александрии; земля между этими двумя городами позволяла проложить более-менее ровную дорогу.) Один стадий в современной системе измерения равен 166 метрам. Таким образом, окружность Земли была рассчитана так: 166 метров × 5000 стадиев × 50, что составляет примерно 41 500 километров, всего на 1500 километров (около 4 процентов) больше правильного значения. На протяжении целой тысячи лет никому не удалось получить более точный результат, чем Эратосфен.
Сейчас город Сиена известен как Асуан. В нем до сих пор сохранился тот самый колодец, однако из-за безжалостного полуденного зноя, наступающего в день летнего солнцестояния, это место вряд ли станет Меккой для туристов.
Сейчас город Сиена известен как Асуан. В нем до сих пор сохранился тот самый колодец, однако из-за безжалостного полуденного зноя, наступающего в день летнего солнцестояния, это место вряд ли станет Меккой для туристов.
Ко временам Эратосфена греческая математика уже прошла путь от первых идей Фалеса относительно треугольников до большого свода теорем о них вместе с доказательствами. Преобладание треугольника в греческом мышлении обусловлено тем, что все фигуры, построенные на основе прямых линий (квадраты, пятиугольники и т. д.), можно разбить на треугольники, а фигуры, образованные кривыми линиями (такие как окружности, эллипсы и параболы), — приближенно представить в виде треугольников.
Поскольку все треугольники делятся на прямоугольные (треугольники, в которых один угол прямой, или «четвертьоборотный»), древние греки ценили последние больше всего. На представленном ниже рисунке показано, как разбить треугольник на два треугольника поменьше с прямыми углами. Для этого необходимо провести перпендикуляр до самой большой стороны от противоположного угла треугольника. Когда мы начинаем изучать математику, нам рассказывают, что такое гипотенуза — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. И сразу после этого объясняют теорему Пифагора (нижний рисунок), которая гласит:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов [5].
Прямоугольные треугольники
Теорема Пифагора
Теорема Пифагора стала одной из наиболее известных в математике по многим причинам, самая главная из которых состоит в том, что в ней речь идет о прямоугольном треугольнике — объекте планиметрии, не поддающемся упрощению.
Когда Солнце отбрасывает тень от шеста, образуется прямоугольный треугольник, как мы помним из истории о Фалесе. Однако, когда Солнце движется по небу, изменение угла падения солнечных лучей не вызывает пропорционального изменения длины тени. Если угол увеличивается с постоянным приращением (как на представленном ниже рисунке), то приращение длины тени с каждым разом становится все больше, поэтому в конце дня мы видим, как тени буквально ползут по земле. Астрономы, не говоря уже о производителях солнечных часов, очень хотели понять взаимосвязь между углом падения солнечных лучей и длиной тени. Но у древних греков не было инструмента, который бы помог им ответить на этот вопрос: при всех их геометрических знаниях, существовавшая на то время система представления чисел была чрезвычайно громоздкой. Для того чтобы продвинуться дальше в изучении треугольников, древним грекам требовалась более эффективная система записи дробных чисел.
Солнечные лучи, падающие под равными углами, отбрасывают тени разной длины
Греческая система счисления произошла от египетской, которая подразумевала запись чисел двумя способами [6]. Вырезая числа на дереве или высекая на камне, египтяне использовали иероглифы. Каждая степень десяти от единицы до миллиона была представлена специальным символом: 1 — вертикальная линия, 10 — перевернутая буква U, 100 — спираль, 1000 — цветок лотоса со стеблем, 10 000 — слегка изогнутый палец, 100 000 — головастик, 1 000 000 — человек на коленях с поднятой к небу головой [7]. Любое число записывалось посредством повторения этих символов; например, число 3 141 592 выглядело бы так.
Для записи чисел на папирусе египтяне применяли менее сложную систему иератического письма, которая больше подходила для использования ручки и чернил. Они ввели специальные символы для обозначения цифр и чисел, кратных 10. Таким образом, вместо утомительного изображения числа 7 в виде семи вертикальных линий египтяне применяли один символ . Переход от представления чисел в виде повторяющихся иероглифов к их записи с помощью символов был важным шагом вперед.
В случае записи чисел с помощью иероглифов для обозначения дробей над числом размещался символ рта , для того чтобы обозначить обратную величину — подобно тому, как мы ставим 1 над линией дроби. Например, дробь изображалась как , а — как . В системе записи чисел посредством иератического письма для обозначения дроби над числом ставилась точка; например, дробь выглядела так: . Египтяне использовали только единичные дроби, поэтому им приходилось разбивать дроби с числителем больше 1 на сумму единичных дробей, например — на + и — на + + + . Сжатое значение египетских сумм единичных дробей напоминает нашу систему десятичных дробей, в которой, например, число 0,234 представляет сумму дробей + + , хотя египетская система была не настолько эффективной и гибкой, как наша [8].
Во времена Евклида древние греки уже использовали систему счисления, основанную на египетском иератическом письме: 27 числам соответствовали 27 различных символов — букв греческого алфавита [9]. Например, число 444 записывалось как υµδ, поскольку символом υ обозначалось число 400, символом µ — 40 и δ — 4. Дроби описывались словами, скажем, «одиннадцать частей в восьмидесяти трех» или отображались в виде простых дробей с числителем и знаменателем, во многом напоминавших современную форму, такую как , хотя у греков сохранилось исторически сложившееся пристрастие к единичным дробям. Египетская и греческая системы представления чисел не годились для астрономии, поскольку для отслеживания движения планет необходимо рассчитывать малейшие доли углов, а простые и единичные дроби слишком громоздки для этого.
В Месопотамии, однако, применялась гораздо более гибкая система представления чисел. В Вавилоне использовалась позиционная система счисления, в которой значение каждой цифры зависело от ее позиции в числе. Современная числовая система — это десятичная позиционная система счисления. Например, в числе 123 цифра 3 находится в разряде единиц, цифра 2 — в разряде десятков и цифра 1 — в разряде сотен. Большим преимуществом позиционной системы счисления является то, что с ее помощью можно записывать дроби. В нашей системе счисления такие дроби называются десятичными. Например, в числе 0,56 цифра 5 находится в разряде десятых, а цифра 6 — в разряде сотых.
Вавилоняне применяли шестидесятеричную систему счисления, то есть в ее основу было положено число 60. (В вавилонской системе числа записывались в виде комбинации двух символов — вертикального клина и горизонтального клина .) До сих пор неизвестно, почему вавилоняне выбрали именно число 60 в качестве основания позиционной системы, хотя, возможно, это объясняется тем, что шестьдесят — минимальное число, которое делится на 1, 2, 3, 4, 5 и 6, а это упрощало решение ряда арифметических задач. Вавилоняне расширили свою систему представления чисел на дроби. У них не было специального «шестидесятеричного» символа, подобного нашей десятичной запятой, поэтому значение разрядов приходилось определять по контексту. Например, число 123 могло означать также, что цифра 1 находится в разряде единиц, цифра 2 — в разряде шестидесятых, а цифра 3 — в разряде 3600-х. Позиционные дроби значительно превосходят простые дроби, как мы знаем по собственному опыту применения десятичных дробей. Для их записи требуется меньше символов, и с ними проще делать расчеты. Вавилоняне умели извлекать корень из двух до трех шестидесятеричных разрядов, или с точностью около 0,000008 от истинного значения — поразительный результат для того периода. Легкость, с которой вавилоняне делили углы на более мелкие части, позволила им добиться выдающихся для своего времени успехов в астрономии.
Вавилоняне поделили круг на 360 градусов. Возможно, такое разбиение было связано с зодиакальным кругом, который состоял из 12 знаков зодиака и 36 декан (деканальных божеств), или с тем, что 360 — это примерное количество дней в году. Не так давно появилось еще одно предположение: число 360 выбрано потому, что, как показано на рисунке ниже, в окружность вписывается шесть равносторонних треугольников и каждый из углов в ее центре разделен на 60 частей, как того требуют шестидесятеричные дроби. Безусловно, все эти причины дополняли друг друга, и вавилонская система счисления оказалась чрезвычайно долговечной.
Во II столетии до нашей эры древние греки заимствовали вавилонские дроби, используемые до сих пор. Градус по традиции был разделен на 60 более мелких частей, каждая из которых обозначалась как pars minuta prima («часть мелкая первая») и состояла, в свою очередь, тоже из шестидесяти мелких частей, позиционируемых как pars minuta secunda («часть мелкая вторая»). От этих латинских выражений произошли слова минута и секунда, или единицы времени, — самые известные реликвии, доставшиеся нам от древней шестидесятеричной системы счисления.