Журнал «Компьютерра» № 23 от 19 июня 2007 года - Компьютерра Журнал 619 9 стр.


ГОСТИНАЯ: Взрыв в замкнутом пространстве

Автор: Губайловский Владимир

В марте 2007 года компания IDC опубликовала глобальный прогноз роста цифровой информации до 2010 года [The Expanding Digital Universe: A Forecast of Worldwide Information Growth Through 2010]. Согласно отчету, объем цифровой информации, созданной в 2006 году, составил 161 экзабайт (1 экзабайт = 1018 байт). В 2010 году объем цифрового мира достигнет 988 экзабайт, то есть приблизится к 1 зеттабайту (1021 байт). Для сравнения: объем мирового океана составляет около одного зетталитра (точнее, 1,3х1021). Так что, если верить IDC, к 2010 году море мы вычерпаем, правда, пока не ложкой, а литровой кружкой, но и это впечатляет.

В минувшем марте число пользователей Интернета оценивалось в 1,1 млрд. (17% населения Земли, которое, по данным ООН, составляет 6,5 млрд. человек). В 2010 году число пользователей Интернета достигнет 1,6 млрд. (23% населения Земли, которое, опять же по прогнозу ООН, составит 6,9 млрд.). Причем 1,2 млрд. (17% населения) будут выходить в Сеть по широкополосному каналу.

К началу нынешнего года число абонентов сотовой связи превысило 2,5 млрд. (около 40% населения планеты). По прогнозу iSupply, к 2010 году число абонентов достигнет 4 млрд. (почти 60% землян). Если на число пользователей Интернета демография еще не будет оказывать решающего влияния, то рост числа абонентов сотовой связи уже будет «сдерживаться населением Земли». А значит, уже в 2010 году сотовым компаниям придется повсеместно перенести акцент с передачи голоса на передачу данных – снижение цен на трубки и минуты не будет играть существенной роли, поскольку неохваченных рынков не останется. Придется скрести по сусекам – обеспечивать мобильной связью слабовидящих и плохослышащих, домашних животных и младенцев, людей, живущих в бразильской сельве, в Гималаях, в приполярной тундре и на дне морском, – и интенсивно продвигать мобильный Интернет.

Будет ли население Земли расти в долгосрочной перспективе? По-видимому, нет. И это касается не только Европы, где снижение рождаемости уже отчетливо проявилось, но и мира в целом. Согласно отчету ООН за март 2007 года [World Population Prospects: The 2006 Revision], наибольший относительный прирост населения приходится на 1965–70 годы – тогда он составлял 2,02% в год. В дальнейшем темпы роста населения на планете постоянно и быстро падали и составили в 2005 году 1,24%. Если мы посмотрим «умеренный» прогноз ООН, то увидим, что население Земли достигнет в 2050 году 9 191 287 000 человек, а темпы роста снизятся до 0,36%, то есть нулевой рост (или максимум населения на Земле) будет практически достигнут. По-видимому, десятимиллиардный житель планеты не родится никогда.

Но это «умеренный» прогноз, а есть еще и "низкий", согласно которому максимум населения придется на 2040 году и составит 7 871 770 000 человек. Дальше население начнет сокращаться. Есть основания полагать, что «низкий» прогноз окажется вполне реальным, и повлияет на это рост цифрового мира.

Российские демографы [Коротаев А. В., Комарова Н. Л., Халтурина Д. А. Законы истории. Вековые циклы и тысячелетние тренды. Демография, экономика, войны. 2007] обратили внимание на тесную корреляцию между падением темпов роста населения и ростом грамотности женщин: чем выше процент грамотных женщин, тем медленнее растет население. Тотальная «мобилизация» приводит к неизбежному росту грамотности среди прекрасной половины человечества независимо от места проживания и национальной принадлежности: если есть мобильный телефон, нужно как минимум уметь набрать номер, заплатить по счету, сменить тариф, обменяться SMS. (Можно предложить российским властям, озабоченным медленным ростом населения страны, радикальный вариант стимулирования рождаемости: запретить девочкам посещать школу и материально поддерживать ранние браки. Только вот не знаю, устроит ли такой вариант россиянок.)

Мы видим два устойчивых тренда – стабилизация населения планеты и взрывной рост цифрового мира. Рассматривая эти процессы совместно, можно предсказать, что уже в первой половине XXI века развитие цифрового мира из экстенсивного станет интенсивным. Это взрыв в замкнутом пространстве. Число людей (пользователей) не только конечно, но и вполне обозримо, а вот на количество и качество различных онлайновых сервисов – инструментов и баз данных – никаких ограничений нет.

Благодаря беспроводной связи, миниатюризации и удешевлению устройств доступа, подавляющее большинство людей сможет находиться в онлайне двадцать четыре часа в сутки семь дней в неделю. Это может привести не только к глобальному изменению процессов производства и потребления, но и к возникновению новых – коллективных – форм мышления, где совместно с кремниевым процессором постоянно и целенаправленно будет работать биологический – человеческий мозг.

Такой симбиоз уже можно назвать искусственным интеллектом. Это не особый алгоритм, стартующий на отдельном компьютере, это распределенная сеть, которая включает людей, базы данных и самые разные сервисы, обслуживающие как человека, так и другие сервисы. Это разнообразные методы концентрации интеллектуальных усилий на выбранной цели. Это проблемно-ориентированная сеть, наложенная на глобальный публичный Интернет и постоянно взаимодействующая с другими сетями.

Такой интеллект сможет задуматься не только о постоянной экспансии (даже если это продвижение к горизонту познания), но и о собственной природе, и выводы, к которым он придет, предсказать сегодня принципиально невозможно.

ТЕМА НОМЕРА: Жидкое лидерство

Автор: Козловский Евгений

Жидкокристаллические телевизоры стали самой модной и распространенной разновидностью телевизоров: качество их картинки достигло довольно высокого уровня и постоянно повышается, размеры диагонали растут, едва ли не догоняя размеры «плазм», а цены стремительно падают.

ЖК-телевизоры обладают большинством достоинств цифровых дисплеев: безупречностью геометрии, отсутствием необходимости преобразовывать (а значит, частично терять) данные, записанные в цифровом виде – на дисках и передаваемые по разного рода кабельным и спутниковым каналам; оцифровка же аналогового сигнала, поступающего по традиционным телевизионным каналам, хоть это и кажется парадоксальным, к видимому ухудшению картинки не приводит, более того – после оцифровки аналоговая картинка выглядит даже лучше. Вдобавок ЖК-телевизоры сравнительно легки и плоски, что привлекает к ним домашних зрителей.

Однако сам принцип формирования картинки на жидкокристаллическом экране заключает в себе несколько… мягко скажем, неидеальностей, которые, с одной стороны, в той или иной мере преодолеваются, с другой – не особенно взыскательными зрителями либо не замечаются вовсе, либо – считаются не важными. Прежде чем классифицировать жидкокристаллические телевизоры по принципу построения экранов, пробежимся по этим самым родовым недостаткам.

Первый – дискретная структура экрана. Сигнал в ЖК-экранах подается к каждой точке, и если число точек не совпадает с числом точек источника, мы наблюдаем искажение. Если какая-нибудь точка источника попадает между ячейками панели, она может потеряться или, если соответствует полутора, скажем, ячейкам, – отобразиться только одной или сразу двумя. На компьютерных мониторах, куда подается строго детерминированный по логическому размеру видеосигнал, этот эффект особенно заметен: попробуйте подать на монитор с физическим разрешением, например, 800х600 картинку 640х480. Или, напротив, – 1024х786. С телевизорами дело обстоит еще сложнее, ибо аналоговый эфирный сигнал мало что различается по логическому размеру в зависимости от стандарта (PAL со 625 строками в кадре и NTSC – с 525), так еще и не весь отдан картинке, и, если вы смотрите записанный на аналоговой видеокамере, а потом оцифрованный видеоролик на компьютере, – вы непременно замечаете внизу кадра полоску "шума", который на деле не шум вовсе, а некие сигналы. То есть, наверное, можно было бы сделать отдельные ЖК-телевизоры, рассчитанные на PAL, и отдельные – на NTSC (не факт, что и у них можно было бы добиться абсолютно адекватной сигналу картинки), – однако после многодесятилетнего царствования мультисистемных аналоговых телевизоров, боюсь, такое решение не пришлось бы покупателям по вкусу. Тут ведь еще надо иметь в виду, что видео, записанное на диски, DVD, VideoCD, – тоже, как правило, выдает картинку, соответствующую разрешению PAL или NTSC, а когда фильмы записываются в их первоначальном формате 2,35:1, 1,78:1 или еще в каком-нибудь "нестандарте", – телевизору приходится растягивать их на весь экран (или обрезать, радикально уменьшая диагональ), – и тут уж точно никак не подстроиться. Выпуск же отдельных телевизоров подо все существующие форматы фильмов – это, полагаю, из области фантастики.

Конечно, производители ЖК-телевизоров пытаются бороться с этим дефектом, устанавливая разные умные микросхемы, которые приводят в соответствие логический размер принимаемой картинки с логическим размером матрицы, и успехов на этом поприще добились замечательных (эффектов, вроде описанного компьютерного, я практически ни на одном ЖК-телевизоре в полной мере не встречал), – однако единственным поистине эффектным методом борьбы мне видится значительное увеличение числа пикселов ЖК-панелей, дабы погрешность попадания оказалась меньше разрешения нашего зрения. Например, нынешние продвинутые ЖК-телевизоры с подлинным HDTV-разрешением (так называемые Full HDTV): 1920х1080 (около двух мегапикселов) уже вполне удовлетворительно показывают стандартные телевизионные картинки (под «стандартными» я и здесь, и далее буду иметь в виду сигналы PAL или NTSC, а также, в противоположность аббревиатуре HDTV, употреблять аббревиатуру STV), – как раз в силу достаточного количества экранных пикселов. (Другой разговор, что на таких панелях особенно заметной становится принципиальная убогость стандартного сигнала.) Когда же на Full HDTV-аппарат подается цифровой видеосигнал Высокой Четкости, он – в случае 1920х1080 укладывается точка в точку, – зато при подаче сигнала другого разрешения – например, 1920х720 или, того пуще, – 1440х1080, когда картинку приходится уже в телевизоре растягивать, – дефект «несовпадения» снова начинает проявляться. Скажу правду, он заметен и раздражает только людей особо придирчивых – тем не менее, он имеет место, о чем надо хотя бы знать.

ЗАСАДА №1

Один из самых распространенных мифов о ЖК-телевизорах гласит, что лучшие телевизоры делают те, кто производит матрицы самостоятельно. Звучит вроде бы логично, однако к реальности – как и многие логичные на первый взгляд утверждения – этот тезис отношения не имеет. Хорошая матрица – необходимое, но не достаточное условие. И из того, что Sony использует матрицы Samsung (что само по себе существенное огрубление действительности – на самом деле, завод S-LCD является совместным предприятием Sony и Samsung), никаких выводов о качестве телевизоров Sony или телевизоров Samsung сделать нельзя.

Что же до производителей панелей, то заметных игроков на рынке ТВ-панелей меньше десятка, причем конечному потребителю, по большому счету, известны только трое: Samsung (S-LCD), LG (LG/Philips) и Sharp. Тайваньские компании – AU Optronics (AUO), Chi Mei Optoelectronics (CMO) и Chunghwa Picture Tubes (CPT) – на потребительском рынке не "светятся", хоть и контролируют около сорока процентов рынка ЖК-панелей (AU Optronics, например, делает панели для Sony и Samsung, поскольку даже последнему порой выгоднее закупать недорогие матрицы на стороне, нежели делать самому). Разумеется, ничего плохого в том, чтобы уточнить, какая именно матрица (и чьего производства) используется в интересующей вас модели, нет, но толку от этого знания немного, в том числе и потому, что… – В.Г.

Следующий дефект тоже вытекает из конструкции. ЖК-дисплей – это такая специальная матрица, прозрачность ячеек которой меняется в зависимости от величины приложенного напряжения. Теоретически она должна меняться от полной, стопроцентной, до нулевой, – практически же ни той, ни другой добиться не удается. Но если неполную прозрачность удается перебить увеличением яркости лампы, то с отсутствием черноты бороться куда труднее. Победить ее в полной мере – даже теоретически – можно только путем обрезки той или иной части теневой области целиком, грубо говоря, недосветом лампы. То есть получить подлинный черный нам мешает сам принцип жидкокристаллических панелей, где «картинкообразующий» слой не светится, а только фильтрует свет лампы, стоящей за ним. И мы, чтобы добиться подлинной черноты (имея в виду, что ни один жидкий кристалл полностью не закрывается в принципе), должны либо снижать яркость подсветки (что приводит к общей вялости картинки). Кроме того, экран отражает внешний свет, и приходится применять специальные фильтры, изменяющие соотношение поглощения/отражения. Впервые подобные фильтры были применены в экранах ноутбуков (у Toshiba, например, это называется TruBrite, у Fujitsu-Siemens – Crystal View; есть еще BrightView, XBRITE, UltraSharp, Crystal Clear и др.). Порой производители делают экран зеркальным, порой – совмещают полировку с новыми лампами, а кто-то улучшает отражение, ибо матовое покрытие рассеивает внешний свет, за счет чего экран кажется менее черным. Решения эти, понятное дело, паллиативные: в случае полировки наружного слоя добавочный блеск не способствует, например, идеальному просмотру, ибо кроме содержимого экрана вы видите на нем и собственное отражение, – однако завоевывают покупателей, каждый из которых решает, что для него меньшее зло: блеск или некоторая тусклость. И тут особенно очевидным становится преимущество кинескопа…

Наверное, никакие ухищрения не помогут производителям ЖК-панелей полностью избавиться от недостаточной черноты черного, – и тут единственная надежда перфекционистов на очень медленно пробивающие себе дорогу OLED-дисплеи (Organic Light Emitting Diode), ячейки которых светятся при подаче напряжения и, следовательно, не нуждаются ни в каких подсвечивающих лампах. Пока присутствующие на рынке OLED-дисплеи слишком малы, они не могут похвастать глубиной цвета и применяются в основном в крохотных плеерах, в качестве внешних экранчиков мобильных телефонов или как видоискатели в карманных видеокамерах. Впрочем, то с одного конца мира, то с другого (по преимуществу, правда, с юго-восточного) приходят новости то о семнадцатидюймовом OLED-дисплее, то чуть ли не о тридцатидвух… Но в качестве телевизионных экранов – факт! – они пока не появились и, что называется, неизвестно… Специалисты говорят, что технологических преград для создания больших OLED-дисплеев нет, а есть только коммерческие: слишком, мол, дорого, – так что ближайшие годы нам придется все-таки жить с ЖК (которые, к слову заметить, тоже поначалу, и довольно долго, были несовершенны и дороги).

Следующий недостаток ЖК-телевизоров – сложность достижения на ЖК-панелях достаточной глубины цвета. Считается, что восьмибитный (двадцатичетырехбитный, – если суммарно, по трем составляющим) цвет, дающий больше шестнадцати миллионов цветовых оттенков, избыточен для любого нормального человека. Когда мы имеем дело с цветом семи– или шестибитным, картинки на первый взгляд кажутся вполне полноцветными, однако на любой градиентной заливке, да просто на цвето-яркостном переходе (особенно это заметно в светлой части изображений), заметными становятся границы полутонов, которые меня, например, раздражают безмерно. (Я не видел ни одной "плазмы", где этот дефект был бы преодолен.) Восьмибитный цвет применительно к ЖК-технологии означает, что каждый кристалл, в зависимости от подаваемого на него напряжения, должен дать как минимум два в восьмой степени (256) фиксированных состояний прозрачности, причем шкала непрозрачности должна быть равномерной.

Долгое время добиться от жидких кристаллов такого примерного поведения не удавалось (и до сих пор удается отнюдь не на всех их видах. Например, у самых дешевых, применяемых в матрицах TN+film (подробности – дальше), реально цвет всего шестибитный, 262 тысячи цветовых оттенков, и, чтобы ликвидировать разводы, производители применяли (а на матрицах TN+film – применяют и до сих пор) быстрое чередование ближайших к нужному цветов [Технология FRC (Frame Rate Control, Покадровое Управление Цветом)], эдакую артиллерийскую вилку, что приводит к определенному улучшению картинки, но при этом частенько и к заметному глазу миганию, – однако подлинных шестнадцати с хвостиком миллионов цветов все-таки не дает. Если производитель слегка совестлив, а покупатель слегка же продвинут, о такой подмене ему расскажут обозначенные на коробке или в паспорте 16,2 млн. цветов, которые теоретически и должны получаться от применения технологии FRC, – в отличие от 16,7 млн. цветов TrueColor. Сегодня на матрицах типа IPS и *VA вроде бы уже достигнута подлинная восьмибитность цвета: в связи со сложностью проверки утверждений производителей приходится полагаться на собственный глаз, – и вот он при взгляде на картинку современных ЖК-телевизоров пока не насторожился ни разу. Тут уместно заметить, что матрицы TN+film больших размеров из-за жутких искажений цвета на краях экрана, даже если сидишь строго по центру, в телевизоры больших диагоналей практически не ставят (хотя, например, Samsung и Viewsonic не стесняются выпускать мониторы на TN+film-матрицах аж до 22 дюймов), так что, если вы покупаете ЖК-телевизор с диагональю больше тридцати двух дюймов (а еще лучше – от сорока!), вы в значительной мере застрахованы от TN+film-матрицы с «интерполированной» цветовой глубиной или некачественной матрицы иного типа.

Одной из последних новинок в ЖК-телевизоростроении можно считать замену подсветки матриц с люминесцентной на светодиодную. Здесь уже речь идет не об увеличении цветовых градаций самой матрицы, а, так сказать, об окраске цвета подсветки. Известно, что и кинескопы, и традиционные ЖК-панели умеют передавать далеко не все видимые нами цвета, а где-то между 60 и 70 процентами. (Особенно сильно обрезаются зеленые тона, в связи с чем некоторые производители ЖК-матриц даже добавляют в каждый пиксел еще одну зеленую ячейку: так, например, устроен экран последней модели PhotoViewer’а от Epson.) В первом случае в этом по большей части виноват состав люминофора, во втором – спектральный состав света подсвечивающих ламп с холодным катодом. У некоторых светодиодов же он несколько шире: область цветового охвата у них повышается процентов на 5–10 по сравнению с лампами с холодным катодом. Нельзя сказать, что светодиодная подсветка уже завоевала весь ЖК-телевизионный рынок, однако, если постараться, можно отыскать и такие модели. (Тут же, в скобках, должен заметить, что у вышеупомянутых OLED-дисплеев – во всяком случае, у их модификации по имени AMOLED – цветовой охват вплотную подходит к идеальным ста процентам!)

Назад Дальше