В конце концов научная общественность пришла к единому мнению: загадочные мутации не являются в строгом смысле слова направленными и не предназначены для достижения какой‑то конкретной цели. У многих бактерий, переживших голод и вновь получивших способность использовать в качестве источника питания лактозу, обнаружились и другие мутации, на этот раз в генах, не имевших никакого отношения к лактозе. Вместо «направленных мутаций» ученые заговорили о «гипермутировании». Добавляя к слову приставку «гипер», они подразумевали, что в критической ситуации частота мутаций у E. coli может подскочить в сто, а то и в тысячу раз. Исследования показали, что ДНК — полимеразы низкой точности и есть те ферменты, которые вызывают дополнительные мутации.
Некоторые ученые утверждают, что гипермутирование — элегантная стратегия борьбы с вымиранием. В нормальных условиях естественный отбор благоприятствует низкой частоте мутаций, поскольку в большинстве своем мутации вредны. Но в критических, стрессовых ситуациях дополнительные мутации резко повышают шансы на то, что вид сумеет — и успеет — случайным перебором вариантов найти выход из кризисной ситуации. Чтобы избежать голода, E. coli не обязательно знать, что для этого хватит одной крохотной мутации в переключателе, который управляет работой генов, участвующих в метаболизме лактозы. Ей просто придется испытать разные варианты изменений ДНК и в конце концов добраться до нужного варианта.
В гипермутировании заключается очевидный риск: вместе с необходимой благоприятной мутацией оно может породить множество мутаций вредных. Сьюзен Розенберг из Бейлоровского медицинского колледжа в Техасе и ее коллеги считают, что E. coli минимизирует этот риск, распределяя его на всю колонию. Когда у E. coli в критической ситуации происходят дополнительные мутации, у каждой отдельной бактерии изменяется литтть один крохотный участок ДНК. Естественно, у разных микроорганизмов эта область мутаций приходится на разные участки молекулы; в противном случае каждая особь получила бы множество неблагоприятных мутаций, рассредоточенных по всему геному. В то же время в многочисленной колонии могут быть одновременно опробованы новые версии едва ли не всех генов. Если хотя бы несколько бактерий наткнется на удачный вариант, эти особи тут же начнут стремительно размножаться.
Возможно, гипермутирование для E. coli — хороший способ справиться со стрессом, но возник этот механизм по совершенно иным причинам. Оливье Тенайон из Национального института здоровья и медицинских исследований Франции указывает, что для синтеза высокоточных ДНК — полимераз требуется немало энергии и материалов.
Может быть, в моменты стресса E. coli просто не может позволить себе роскоши тщательной и точной репарации ДНК. Вместо этого она обращается к ДНК — полимеразам низкой точности. Работают они, конечно, весьма небрежно, но зато E. coli укладывается в энергетическую смету. На самом деле естественный отбор, предполагает Тенайон, благоприятствует вовсе не высокой частоте мутаций, а просто возможности энергетически менее затратного исправления ДНК.
Но даже если кардинальное изменение частоты мутаций у бактерий возникло как побочный эффект, в определенных обстоятельствах оно все же может быть полезным. Тенайон с коллегами продемонстрировал, что у E. coli частота мутаций различается чрезвычайно сильно. В стрессовой ситуации одна бактерия может мутировать в тысячу раз быстрее другой. Должно быть, такой огромной разницей микроорганизмы обязаны генам, отвечающим за гипермутирование, которые могут передаваться от поколения к поколению.
Вполне возможно, что в разных ситуациях естественный отбор подхватывает варианты с разной частотой мутаций. Тенайон и его коллеги отслеживали среднюю частоту мутаций у E. coli при колонизации ею мыши. В самом начале колонизации, когда бактерии испытывали сильный стресс, наибольшее распространение в популяции имели особи с высокой частотой мутаций. Когда же бактериям удавалось основать в кишечнике мыши стабильные колонии, первенство переходило к редко мутирующим особям. Антибиотики, вероятно, также приводят к появлению множества часто мутирующих особей, потому что у них устойчивость к лекарству может появиться быстрее, чем среди бактерий, которые мутируют реже.
Некоторые критики скептически настроены по отношению к направленным мутациям, гипермутациям и их «идеологическим» следствиям. Так, Джон Рот из Калифорнийского университета в Дэвисе и Дан Андерссон из Уппсальского университета в Швеции полагают, что Кейрнс в своих первоначальных экспериментах не открыл ничего необычного. Просто у бактерий, которые он использовал, lас — оперон не был заблокирован полностью и мог все же производить нужные белки, хотя и в очень небольшом количестве; и это позволяло бактериям не погибнуть от голода. При этом вполне могло быть так, что обычная случайная мутация удвоила у одной из бактерий lас — оперон, позволивший ей утилизировать больше лактозы и размножаться быстрее. У кого‑то из потомков этой бактерии могла столь же случайно возникнуть третья копия этого участка ДНК, и естественный отбор в условиях эксперимента подхватил и эту мутацию.
Таким образом, утверждают Рот и Андерссон, E. coli вполне может расширить свою коллекцию генов лактозного оперона посредством всего лишь обычных спонтанных мутаций и естественного отбора. Кстати, по мере роста числа копий lac — оперона вероятность того, что какая‑нибудь случайная мутация восстановит одну из них до нормального рабочего состояния, также возрастает. Бактерии, которым так повезет, внезапно начнут размножаться намного быстрее, чем остальные. Позже новые мутации, возможно, избавят их от лишних дефектных копий, оставив одну нормально работающую. По мнению Рота и Андерссона, этот процесс может создавать иллюзию направленных мутаций при полном отсутствии таковых.
Дебаты на эту тему продолжаются с неослабевающей силой. Следует отметить, что вопрос этот важен как для реальной медицинской практики, так и в научном плане для понимания механизмов жизни. Если для выживания микроорганизмам действительно необходимо регулировать частоту мутаций, то мы, вмешавшись в механизм такого управления, возможно, научимся убивать бактерии более эффективно. Как мы помним, Флойд Ромесберг показал, что, если не дать E. coli повысить частоту мутаций, устойчивость у нее не разовьется. В настоящее время он и его коллеги пытаются разработать на основе своего открытия конкретные методы лечения. Они надеются, что когда‑нибудь человек одновременно с антибиотиком будет принимать особое лекарство, которое не позволит микроорганизмам увеличить частоту мутаций.
Некоторые ученые полагают, что животные и растения способны манипулировать мутациями в любых стрессовых ситуациях. Сьюзен Линдквист с коллегами из Института Уайтхеда в Кембридже (штат Массачусетс) обнаружили, что у плодовых мушек имеется своеобразный буфер, который в какой‑то степени защищает их от последствий вредных мутаций. Так, неблагоприятная мутация может привести к тому, что геометрическая форма, в которую сворачиваются молекулы определенного белка, будет неправильной. Но у плодовой мушки есть белки теплового шока, способные вернуть этим молекулам правильную форму. Линдквист утверждает, что генетическое разнообразие плодовых мушек намного шире, чем было бы возможно без помощи белков теплового шока.
Линдквист обнаружила, что стресс выявляет подобные мутации. Если в окружающей среде поднимается температура или появляются токсические вещества, даже нормальные белки в клетках мух утрачивают нормальную форму. Белки теплового шока работают на пределе возможностей и не успевают придать всем мутантным белкам правильную форму Эти белки могут очень заметно влиять на внешний вид мушек, меняя цвет глаз, форму крыльев или другие части тела.
Линдквист предполагает, что белки теплового шока позволяют мушкам накопить запас мутаций, преимуществами которых мушки могут воспользоваться в моменты стресса, не испытывая при этом в более спокойные времена никаких отрицательных воздействий с их стороны. Проявившаяся в критический момент мутация может оказаться полезной для организма, а дальнейшие мутации, возможно, позволят ей работать и после исчезновения стресса. Линдквист с коллегами нашла аналогичный буфер мутаций у растений и грибов; это позволяет предположить, что такая стратегия обычна для живых организмов. Механизм, предложенный Линдквист, немного отличается от процесса гипермутирования у E. coli, но дает, по существу, те же фундаментальные преимущества: он позволяет обуздать творческий потенциал мутаций и одновременно минимизировать связанные с ними риски.
Но выясняется, что увеличение числа копий генов по Роту и Андерссону является механизмом, применяемым не только лишенной лактозы E. coli. Приобретение дополнительных копий уже имеющегося гена может помочь множеству живых организмов адаптироваться к новым для них неблагоприятным условиям среды.
Представьте, что микроорганизм сталкивается с новым видом питательных веществ, с которым никогда не встречались его предки. Все ферменты, которые он использует при переработке пищи, в результате естественного отбора настроены на расщепление других молекул. Это, впрочем, не обязательно означает, что микроорганизм не способен утилизировать другие соединения; ферменты вообще настраиваются не слишком точно. Фермент, который очень эффективно разрезает на части молекулы одного типа, может расщеплять молекулы и другого типа, но медленнее и более неуклюже. Если в результате мутаций микроорганизм окажется обладателем нескольких копий гена, он сможет расщеплять новые для него молекулы питательных веществ в большем количестве.
Биолог Итиро Мацумура из Университета Эмори показал на примере E. coli, насколько неразборчивыми могут быть ферменты. Мацумура и его коллеги создали 104 штамма E. coli, у каждого из которых не хватало какого‑нибудь абсолютно необходимого для жизни гена. Затем они создали тысячи плазмид, в которых содержалось по несколько экземпляров другого гена E. coli. Исследователи добавляли такие плазмиды к лишенному необходимого гена штамму и смотрели, не смогут ли эти гены заместить ген, удаленный Мацумурой. Ученым удалось «оживить» таким образом 21 из 104 штаммов.
Эксперимент Мацумуры помог обнаружить у E. coli скрытую пластичность, позволяющую ей приспосабливаться к новым условиям. Не исключено, что и другие виды используют подобные возможности своей ДНК. По мере того как в геноме возникают дополнительные копии генов, микроорганизмы получают возможность более эффективно расщеплять новой питательный субстрат, или обезвреживать какой‑то яд, или справляться с беспрецедентно высокой температурой. Со временем одна из копий гена может измениться и обрести намного более эффективную форму; остальные копии после этого могут постепенно исчезнуть.
Умножение генов может играть творческую роль в эволюционном процессе, но оно же может подвергнуть человека смертельной опасности. Подобно E. coli, клетки нашего тела иногда мутируют и (в очень редких случаях) вступают на дорогу в конце которой их ждет превращение в раковые клетки. Они перестают подчиняться механизмам регулирования, сдерживающим рост нормальных клеток. Пока они продолжают делиться и мутировать, новые мутации делают их все более агрессивными и придают способность уходить из‑под удара иммунной системы. Подобно E. coli, пытающейся приспособиться к питанию лактозой, эти клетки сталкиваются в процессе роста с множеством самых разных препятствий. Любая мутация, способная помочь им преодолеть эти препятствия, подхватывается естественным отбором. Мутации умеют создавать дополнительные копии генов, которые позволят клеткам опухоли размножаться быстрее или, к примеру, успешно сопротивляться химиотерапии. Некоторые из этих дополнительных генов могут принять на себя новые функции и сделать тем самым опухоль еще более опасной.
В общем, иногда E. coli слитком похожа на слона, чтобы слон мог чувствовать себя в безопасности.
Гены в подарок
Вторая мировая война, как и любая другая, предоставила E. coli богатейшие возможности для убийства. Штаммы, вызывающие дизентерию и называвшиеся тогда Shigella, носились по полям сражений и оккупировали города один за другим, убивая без счета. В конце войны шигелла отступила с территории тех стран, которые сумели быстро восстановить канализацию и наладить снабжение чистой водой. Однако там, где с водой были проблемы, — в бедных странах Африки, Латинской Америки и значительной части Азии — шигелла продолжала благоденствовать. Единственным исключением из этого правила оказалась Япония. Эта потерпевшая поражение страна все‑таки наладила очистку воды, и за первые два года случаев дизентерии стало гораздо меньше. Но затем, по какой‑то необъяснимой причине, болезнь вернулась. Если в 1948 г. шигелла стала причиной менее чем 20000 случаев болезни, то в 1952 г. их было уже более 110 000.
Японские микробиологи были хорошо знакомы с бактерией Shigella еще с тех времен, когда в 1897 г. Киёси Сига впервые открыл его. Во время послевоенной вспышки шигеллеза они отбирали у пациентов тысячи бактериальных проб и неустанно искали источник новообретенной мощи зловредной бактерии. Выяснилось, что у микроорганизмов стремительно развивается резистентность к антибиотикам. Сначала микробиологи обнаружили штаммы бактерий, устойчивые к сульфамидным препаратам. Затем, всего через несколько лет, появилась устойчивость к тетрациклину, а чуть позже — к стрептомицину и хлорамфениколу.
Поначалу распространение резистентных штаммов шигеллы шло по обычной для всех бактерий схеме: мутации создавали мощные новые гены, дававшие отдельным бактериям репродуктивное преимущество. Но затем случилось нечто поразительное. На сцене появились штаммы шигеллы, устойчивые к действию всех антибиотиков одновременно. Преображение происходило внезапно: если врачи давали пациенту, страдающему шигеллезом, антибиотик одного какого‑нибудь типа, бактерии часто приобретали резистентность и к другим антибиотикам, которых данный пациент никогда не принимал.
Пытаясь хоть как‑то объяснить обнаруженные странности, японские ученые вспомнили открытие Джошуа Ледерберга, сделанное за несколько лет до этого, — открытие полового размножения у E. coli. Ледерберг показал, что иногда — достаточно редко — эта бактерия может передавать часть своих генов другой, неродственной. В его экспериментах кольцевые молекулы ДНК — плазмиды, переходили от одной бактерии к другой, перенося часть бактериального генетического материала. Ледерберг и другие исследователи установили также, что профаги — тихие вирусы — нелегалы — способны тоже служить челноками и переносить гены туда и сюда. Пробудившийся к жизни вирус иногда случайно копирует несколько генов хозяина в собственную ДНК, а потом переносит эти гены в другие бактерии. За эти открытия Ледерберг и другие ученые были удостоены нескольких Нобелевских премий, но в течение многих лет большинство биологов рассматривало подобную «инфекционную наследственность» всего лишь как удобный лабораторный инструмент, а не как существенную часть природоустройства. Они ошибались, и послевоенные вспышки дизентерии в Японии стали тому первым доказательством.
Цутомо Ватанабэ из Университета Кэйо в Токио и другие японские ученые начали разбираться, действительно ли шигелла способна обмениваться генами. Они доказали, что E. coli К-12 и Shigella могут обмениваться генами резистентности. Эксперименты на людях, больных шигеллезом, подтвердили результат. Ватанабэ сделал заключение, что использование больших доз антибиотиков подталкивало эволюцию генов резистентности либо у шигеллы, либо у какого‑то другого вида бактерий, обитающего в кишечнике. В редких случаях резистентная бактерия передавала свои гены кому‑то из соседей. Более поздние исследования показали, что эти гены располагаются в плазмиде.
Стоило японским врачам начать лечить пациентов новым антибиотиком, как возникали новые гены, обеспечивающие резистентность к нему, а содержащие его плазмиды обнаруживались в популяциях бактерий по всей Японии. Иногда случалось так, что микроорганизм получал при передаче генетического материала две плазмиды одновременно, причем они несли гены резистентности к разным антибиотикам. Две плазмиды могли обменяться участками ДНК, и в результате в некоторых случаях возникала плазмида с двумя генами резистентности вместо одного. Естественный отбор благоприятствовал носителям новых плазмид еще в большей степени, потому что они обладали устойчивостью к обоим антибиотикам. Постепенно плазмиды собирали в себе все большее количество генов резистентности. В итоге шигелла приобрела устойчивость практически ко всем лекарственным средствам, с помощью которых врачи пытались от нее избавиться.
До 1963 г., когда Ватанабэ написал на английском языке длинный обзор для журнала Bacteriological Review, мало кто из ученых за пределами Японии знал об этих открытиях. Западные ученые были поражены. Они поставили собственные эксперименты и убедились, что Цутомо Ватанабэ совершил крупное открытие. Оказывается, гены способны курсировать между бактериями, причем не одним способом. Некоторые из них переносятся с места на место плазмидами; в перемещении других принимают участие вирусы. Вирусы случайно встраивают в свой геном гены хозяина, а затем переносят их в нового хозяина, которого инфицируют. Иногда бактерии попросту целиком «заглатывают» ДНК, высвободившуюся в момент гибели другой бактерии. Так получается, что гены резистентности могут передаваться не только между особями одного вида, но и между разными видами микроорганизмов.