Микрокосм. E. coli и новая наука о жизни - Карл Циммер 7 стр.


Человеческое тело устойчиво во многих отношениях. Человеческий мозг нуждается в постоянной подпитке глюкозой, но мы не теряем сознания, если случайно пропустим обед. Чтобы сохранить нужную концентрацию сахара, тело прибегает к резервным запасам глюкозы. Из небольшого скопления клеток, непрерывно обменивающихся целыми водопадами сигналов, координирующих деление, развивается зародыш. На эти сигналы воздействуют разнообразные помехи, но все же из большинства зародышей получаются совершенно здоровые младенцы.

Раз за разом жизнь умудряется избежать катастрофических неудач и не сбиться с курса.

До недавнего времени у ученых не было достоверных свидетельств о том, почему жизнь обладает такой устойчивостью. Чтобы определить источник устойчивости, необходимо изучить живые системы на глубочайшем уровне подробнейшим образом, сжиться с ними — примерно так же, наверное, как конструктор сживается с создаваемой им системой автопилотирования, используя ее схему для проведения экспериментов. Однако принципиальные схемы живых существ по большей части по — прежнему остаются для нас тайной за семью печатями. E. coli — одно из немногих исключений.

В борьбе за выживание E. coli постоянно сталкивается с серьезнейшими угрозами. Положите в солнечный день чашку Петри на подоконник, и вы поставите обитающих в ней бактерий на грань катастрофы. Жара оказывает на белки E. coli губительное действие. Чтобы работать правильно, каждому белку необходимо все время сохранять характерную только для него скрученную форму, по сложности напоминающую оригами. Перегретый белок разворачивается и становится похожим на спутанный клубок — он денатурируется. Такой белок уже не способен выполнять работу, от которой зависит выживание E. coli.

И все же кишечная палочка не умирает от повышения температуры на несколько градусов. Когда температура поднимается, бактерия начинает синтезировать так называемые белки теплового шока. Они выполняют двойную защитную функцию. Некоторые обхватывают начавшие денатурироваться белки E. coli и возвращают им надлежащую форму. Остальные распознают белки, пострадавшие от жары настолько, что их уже невозможно привести в порядок, и разрезают на части, пригодные для строительства новых белков.

Белки теплового шока вполне способны спасти хозяйке жизнь, но E. coli не в состоянии держать «под рукой» запас таких белков на случай будущих неприятностей. Надо сказать, что эти белки — одни из самых крупных в ее арсенале, а чтобы пережить тепловой удар, могут потребоваться десятки тысяч таких молекул. Производить их про запас — все равно что заставить двор своего дома пожарными машинами на случай, если дом вдруг загорится. С другой стороны, если пожарная машина нужна, то нужна она быстро. E. coli, затратив слишком много времени на производство белков теплового шока, может погибнуть, не дождавшись помощи.

Эта особенность привлекла внимание инженера Калифорнийского технологического института Джона Дойла и его коллег. В прошлом Дойл занимался теорией создания систем управления для самолетов и космических кораблей многоразового использования. Однако оказалось, что в клетке E. coli скрыты конструкторские решения, ничуть не уступающие тем механизмам, в создании которых ему довелось принимать участие. Вместе с коллегами Дойл начал изучать белки теплового шока и то, как бактерия с их помощью выживает.

Исследователи выяснили, что E. coli контролирует запас белков теплового шока с помощью механизма отрицательной обратной связи. С точки зрения инженера, обратная связь возникает тогда, когда выход какой‑то схемы начинает влиять на ее же вход. Так, термостат поддерживает температуру в доме примерно на одном уровне при помощи одной из простейших форм обратной связи. Термостат измеряет температуру в доме и, если она оказывается слишком низкой, включает обогреватель. Если температура слишком высокая, он выключает обогреватель.

E. coli защищается от высокой температуры примерно так же. Ключевой белок ее «термостата» называется сигма-32, который регулирует, какие именно гены будет считывать РНК — полимераза. Даже при невысокой температуре бактерия постоянно считывает ген, отвечающий за синтез сигма-32, и синтезирует его РНК — копии. Но при нормальной температуре молекулы РНК сигма-32 находятся в свернутом состоянии, и E. coli не может использовать их для синтеза белка. Поэтому при нормальной температуре в бактериальной клетке много РНК сигма-32, но совсем нет соответствующего белка.

Однако, когда температура окружающей среды повышается, РНК сигма-32 разворачивается. Теперь рибосомы могут прочитать эти молекулы и синтезировать по ним белок сигма-32, и E. coli за короткое время производит огромное количество этого белка. Молекулы сигма-32 быстро находят молекулы РНК — полимеразы и направляют их к генам, отвечающим за производство белков теплового шока. Таким образом, на синтез десятков тысяч молекул белка теплового шока уходит всего несколько минут.

Столь стремительный ответ может спасти E. coli от перегрева, но в нем же скрыт и большой риск. Внезапный и бесконтрольный синтез белка сигма-32 опасен — даже хорошей вещи может быть слишком много. Ведь описанным способом бактерия наверняка произведет намного больше белков теплового шока, чем нужно. Но мы знаем, что этих молекул в клетке E. coli появляется ровно столько, сколько необходимо для данной температуры: больше, если температура высокая, и меньше, если не очень. Такое тонкое регулирование осуществляется при помощи целой системы петель обратных связей.

Белки теплового шока не просто защищают E. coli от перегрева, но и контролируют количество сигма-32. Одни из них хватают молекулы сигма-32 и прячут «в карман»; другие режут их на части. Когда температура поднимается, в первые несколько мгновений белки теплового шока слишком заняты, чтобы нападать на сигма-32, — ведь необходимо помочь множеству других молекул, подвергшихся губительному воздействию высокой температуры. Но как только им удается взять ситуацию под контроль, свободные белки теплового шока (а их становится все больше) переносят свое внимание на сигма-32. А по мере снижения числа молекул сигма-32 падает и производство новых белков теплового шока.

Этот механизм обратной связи не позволяет E. coli синтезировать слишком много белков теплового шока. Кроме того, она достаточно точно регулирует уровень этих белков. Если температура окружающей среды лишь слегка повысилась, но E. coli еще не умирает от жары, то белки теплового шока быстро снижают уровень сигма-32. Но если температура продолжает повышаться, то их внимание поглощено помощью развернувшимся молекулам и уровень сигма-32 — а значит, и производство белков теплового шока — остается высоким. Когда же окружающая среда остывает до комфортной температуры, «термостат» E. coli практически полностью прекращает производство белков теплового шока.

Устойчивость системы саморегуляции E. coli объясняется наличием в ее управляющих схемах встроенной системы петель обратных связей. Для инженера такая конструкция совершенно естественна. Автопилот в «Боинге-777» использует примерно такие же обратные связи, чтобы удерживать самолет на нужной высоте при любых порывах ветра и нисходящих течениях. Устойчивость и бактерии, и самолета обеспечивает не всезнающее сознание, а сама управляющая схема.

Общая картина

Объедините гены в группы, и они смогут сделать намного больше, чем сделали бы по отдельности. Объедините группы в единую систему — и получите живой организм.

В 1940–е гг. Эдвард Тейтем и другие ученые получили первые сведения о том, для чего предназначены некоторые гены E. coli. К 2007 г. исследователи имели более или менее полное представление о том, чем занимаются примерно 85 % ее генов, что превратило обычную кишечную палочку в золотой стандарт расшифрованности генома. Сегодня по генам E. coli, ее оперонам и метаболическим путям созданы и работают онлайновые базы данных. Загадки, конечно, остаются. Так, у E. coli обнаружен 41 фермент, для которых ученым еще только предстоит найти кодирующие их гены. Тем не менее постепенно вырисовывается примерный портрет E. coli. Пока это максимум того, что удалось сделать биологам в плане полной расшифровки устройства живого организма.

Ученые под руководством Бернарда Палссона, профессора биоинженерии из Калифорнийского университета в Сан — Диего, попытались построить модель метаболизма клетки E. coli. По состоянию на 2007 г. они ввели в компьютер данные о 1260 генах и 2077 реакциях. На базе этой информации компьютер может вычислить, сколько углерода проходит по метаболическим путям E. coli в зависимости от характера поглощаемой ею пищи. Модель Палссона умеет делать то, что делают все хорошие модели, — предсказывать реальность. В частности, она очень неплохо предсказывает, как быстро E. coli будет расти на глюкозе и сколько углекислого газа она при этом выделит. Если Палссон условно отключит бактерии кислород, модель перенаправит углерод на другую, не связанную с кислородом метаболическую траекторию (точно так, как это делает E. coli). Если Палссон исключит из схемы один из белков, модель реорганизует свой метаболизм так же, как это делает реальная мутантная E. coli, у которой отсутствует этот белок. Модель надежно предсказывает поведение E. coli в тысячах самых разных ситуаций; она показывает, что E. coli действительно всегда выбирает наилучший путь и настраивает свой метаболизм так, чтобы размножаться как можно быстрее.

Каким образом обмен веществ E. coli остается таким гибким, если в него входят сотни химических реакций? Почему бактерия, имея перед собой тысячи возможных метаболических путей, всегда выбирает несколько самых лучших? Почему вся эта система попросту не рушится? Оказывается, устойчивости системы способствует сама форма сети, география ее лабиринтов.

Когда ученые изобразили на бумаге метаболический маршрут атома углерода в клетке E. coli, получилась фигура, напоминающая галстук — бабочку. Одно его «крыло» образуют химические реакции поступления в клетку и расщепления пищи. Они следуют одна за другой по простым маршрутам, которые можно изобразить веером стрелок, сходящихся в центре «галстука», на «узле». Здесь траектории становятся гораздо более сложными. Продукт, полученный в результате какой‑то реакции, может быть вовлечен во множество других реакций в зависимости от текущих условий. Именно на «узле» — там, где скрещиваются маршруты — E. coli создает строительные кирпичики для всех своих молекул. Затем эти кирпичики поступают в другое «крыло», образуя веер расходящихся траекторий, на каждой из которых производится свой тип молекул: на одной — молекула мембраны, на другой — кусочек РНК, на третьей — какой‑то белок. Расходящиеся траектории второго «крыла» никогда не пересекаются. Молекула, начавшая движение к тому, чтобы войти в белок, уже не станет частью молекулы ДНК.

Надо сказать, что архитектурное решение в виде «бабочки» с инженерной точки зрения имеет для E. coli глубокий смысл. Рукотворные сети — например, телефонные или электрические — нередко тоже прокладывают по схеме «бабочки». Такая архитектура позволяет сетям работать эффективно и устойчиво. В Интернете, к примеру, входящий веер составляют сигналы всевозможных программ: браузеров, почтовых программ и многих других, причем каждая из них обрабатывает информацию по — своему. Чтобы все эти данные попали в Интернет, их следует преобразовать в коды, соответствующие интернет — протоколам. Потоки данных движутся от персональных компьютеров к серверам, а затем на небольшую группу роутеров, установленных в Лос — Анджелесе, Нью- Йорке и других крупных городах. Роутеры, подобно узлу галстука — бабочки E. coli, прочно связаны между собой. После этого сигналы через веер расходящихся маршрутов направляются к другому персональному компьютеру, где стандартный поток данных будет преобразован в картинку, текстовый документ или другую конкретную форму.

И для работы Интернета, и для E. coli самое главное — центральный узел. Именно он позволяет той и другой сети работать даже при отказе каких‑то частей. Мутация, исключившая из арсенала бактерии одну из метаболических реакций, не убьет E. coli, потому что в «узле» есть и другие траектории, на которые она сможет перевести углерод. Интернет способен продолжать передачу данных даже после того, как откажет один из серверов, так же потому, что сообщения можно направить по другой траектории.

Помимо всего прочего в обеих системах архитектура в виде «бабочки» помогает сберечь энергию. Если бы E. coli функционировала иначе, ей пришлось бы создавать особую цепочку ферментов для производства любой молекулы. Для каждого из этих ферментов потребовался бы собственный ген. Вместо этого у E. coli все входящие траектории сбрасывают свои продукты в одну и ту же сеть в центральном узле. Точно так же Интернету нет необходимости связывать компьютеры напрямую или использовать специальные коды для каждого типа файлов. В обоих случаях такая организация работы возможна только потому, что сеть подчиняется определенным правилам. В Интернете каждое сообщение обязательно переводится на общий язык. И в E. coli энергия всегда передается одним и тем же способом — с помощью АТФ.

Изобретатели Интернета не думали, что создают подобную сеть. Они всего лишь пытались сбалансировать затраты и скорости при объединении серверов. Но, сами того не подозревая, они создали модель E. coli, которая к настоящему моменту охватила всю Землю.

Да здравствуют различия

У каждого из нас свои вкусы. Я, к примеру, не понимаю, почему некоторые любят улиток. Я не могу точно сказать, почему они мне не нравятся, но вполне могу выдвинуть несколько предположений. Может быть, у меня на языке есть особые клетки, в которых от вкуса улитки возникает спазм ужаса. А может, какая‑то нейронная сеть в моем мозгу связывает вкус улиток с каким‑то давним, но очень неприятным воспоминанием. Или, может быть, у меня просто не было возможности полюбить улиток, потому что я вырос на пицце, гамбургерах и арахисовом масле. Ясно одно: этот гастрономический путь для меня закрыт.

Я не знаю наверняка, справедливо ли хоть одно из этих предположений. Я не могу совершить путешествие во времени, переиграть свою жизнь с момента зачатия и посмотреть, как бы обернулось дело, если бы на завтрак в детском саду нас кормили съедобными улитками. Я не могу клонировать себя в сотне экземпляров и расселить своих искусственных близнецов по приемным семьям во Франции. Я просто ненавижу улиток.

Моя нелюбовь к улиткам — всего лишь небольшая иллюстрация к серьезному утверждению: жизнь полна различий. Мы, люди, отличаемся друг от друга бесчисленными особенностями. Мы скромны или самоуверенны, бледны или веснушчаты; мы можем быть водителями или парикмахерами, буддистами или пресвитерианами. Кто‑то из нас живет до ста лет, а у кого‑то третья стадия рака. Наши отпечатки пальцев строго индивидуальны.

Ученые лишь приблизительно представляют, как возникают эти различия. Человек — не просто результат выполнения программы, записанной с помощью ДНК. Пока зародыш развивается в матке, на его гены влияют поступающие из организма матери сигналы. Окружающая среда и после рождения продолжает непредсказуемым образом воздействовать на гены человека. То, какие именно гены активируются и будут работать, зависит от множества вещей: от пищи, которую мы едим, от воздуха, которым дышим, от травм, от радостей и скуки, пережитых в детстве. Мало того, что различия между нами трудно объяснить; они — законный повод для гордости. Человек может стать великим бейсболистом, как Бейб Рут, или композитором, как Фредерик Шопен, актрисой, как Мэй Уэст, или ученым, как Мария Кюри. Все они — продукт сложности вида, каждый представитель которого несет в себе 18000 генов, способных управлять производством 100000 белков, дающих начало удивительным живым существам. Мы уникальны по своей способности воспринимать окружающий мир и формировать свою жизнь с помощью слов, ритуалов и образов. Безусловно, наше представление о E. coli окрашено нашей гордостью.

Конечно, кишечная палочка не умеет читать и не учится в школе, у нее есть только то, что дала мать — природа. Колония, развившаяся из одного — единственного организма, представляет собой всего лишь миллиард генетически идентичных родичей, и поведение каждого из них определяется одними и теми же генетическими схемами. E. coli состоит из одной — единственной клетки; у нее нет тела, построенного из триллиона клеток, развитие которого продолжается не один год. У E. coli не бывает детства, которое она проводила бы на занятиях в частной школе или за поиском объедков на городской свалке. Ей не приходится думать о том, любит ли она улиток на обед. E. coli — всего лишь мешочек с молекулами, изготовленный по стандартному рецепту. Если две бактерии генетически идентичны, то и жизнь они проживут совершенно одинаковую.

Может быть, все это звучит правдоподобно, но на самом деле сказанное далеко от истины. В реальности колония генетически идентичных E. coli — это множество отдельных индивидуальностей. В одинаковых условиях они будут вести себя по — разному. Можно сказать, что у этих бактерий есть собственные отпечатки пальцев.

К примеру, если понаблюдать за двумя плывущими бок о бок генетически идентичными кишечными палочками, то можно уловить момент, когда одна из них сдастся, тогда как вторая будет и дальше крутить своими жгутиками. Чтобы оценить их выносливость, ученый из Калифорнийского университета в Беркли Дэниел Кошланд поместил несколько генетически идентичных E. coli в каплю воды под покровное стекло, где они плавали, вращая своими жгутиками. В качестве стимула Кошланд предложил им капельку аспартата — аминокислоты, ради которой эти бактерии готовы плыть за тридевять земель. Здесь они были заперты под стеклом и могли только кружить на месте. Кошланд обнаружил, что некоторые клоны, пытаясь добраться до аспартата, кружили по капле вдвое дольше других.

E. coli умеет демонстрировать свою индивидуальность и другими способами. Так, в колонии генетически идентичных клонов одни бактерии образуют на поверхности клетки нитевидные выросты — фимбрии, а другие нет. В стремительно растущей колонии всегда найдется несколько бактерий, которые вдруг прекратят размножение и войдут в состояние анабиоза. Часть бактерий в колонии E. coli может расщеплять лактозу, а другие — нет.

Назад Дальше