Теперь остановимся несколько подробнее на процедуре получения обратных единичных корней, с помощью которой в EViews доказывается стационарность AR-процессов. В главе 4 уже говорилось, что в основе теории единичного корня лежит довольно простая формула (4.4), которая считается базовой для понимания стационарности в уравнениях авторегрессии:
При этом уравнение авторегрессии 1-го порядка считается стационарным в том случае, когда коэффициент регрессии ρ < 1. Соответственно, если ρ > 1, то оно считается нестационарным, а следовательно, волатильность в процессе авторегрессии с течением времени может нарастать и стремиться к бесконечности.
Применительно к авторегрессионным процессам, содержащим большое количество лаговых переменных, наличие стационарности предполагает следующее. AR-процессы считаются стационарными в том случае, если в уравнении (5.2) коэффициенты а1, а2…., ар образуют сходящийся ряд и все корни характеристического уравнения 1 — a1Z — a2Z2 — … — apZp = 0 (вещественные и комплексные) должны лежать вне единичного круга (см. рис. 5.2), их абсолютное значение (по модулю) должно быть больше единицы.
Например, для решенного нами уравнения авторегрессии USDOLLAR = 1,321092 × USDOLLAR(-l) — 0,319415 × USDOLLAR(-2) (см. формулу (4.3)) характеристическое уравнение приобретает следующий вид:
1 — 1,321092Yt-1 + 0,319415Y2t-1 = 0. (5.3)
Корни в этом уравнении находятся с помощью известной со школьной скамьи формулы по нахождению корней в многочлене второй степени:
Отсюда следует, что первый единичный корень x1 = 3,138429, а второй х2 = 0,997545. Таким образом, один из этих двух корней характеристического уравнения лежит внутри единичного круга, а потому этот авторегрессионный процесс нельзя назвать стационарным. Однако мы уже говорили, что в EViews находятся не просто единичные корни, а именно ОБРАТНЫЕ единичные корни, которые мы получаем в выводе итогов (см. табл. 5.1) после небольших дополнительных вычислений. При этом первый и второй обратные единичные корни находятся из обычных единичных корней, полученных из уравнения (5.3), следующим образом: х1 = 1: 3,138429 = 0,318631, а второй х2 = = 1: 0,997545 = 1,002461.
По сути, тот факт, что вместо единичных корней мы находим обратные единичные корни, ничего не меняет, однако — и это вполне понятно — при этом требования к тестированию стационарности AR-процесса формулируются противоположным образом. В этом случае авторегрессионный процесс считается стационарным тогда и только тогда, когда абсолютные значения (по модулю) всех обратных корней его характеристического уравнения лежат в пределах единичного круга. Поскольку один из обратных корней больше единицы, то, следовательно, AR-процесс, описанный формулой 1,321092 × USDOLLAR(-l) — 0,319415 × USDOLLAR(-2), нельзя считать стационарным.
5.2. Тестирование AR-структуры на стационарность с помощью функции импульсного ответа
Теперь остановимся еще на одном важном инструменте, который дает EViews для оценки устойчивости статистических моделей к внешним шокам (в нашем случае под ними подразумеваются резкие скачки курса доллара). Это тестирование AR-структуры авторегрессионного процесса на импульсный ответ (IMPULSE RESPONSE). При этом у нас появляется возможность получить также и оценку инновационной неопределенности, возникающей в этом авторегрессионном процессе в результате воздействия внешнего шока.
Алгоритм № 14 Тестирование на импульсный ответ AR-структуры нестационарного процесса, описываемого уравнением USDOLLAR = а × USDOLLAR(-1) + b × USDOLLAR(-2) Шаг 1. Построение функции импульсного и накопленного импульсного ответаЧтобы провести исследование AR-структуры на импульсный ответ (IMPULSE RESPONSE), нам необходимо в диалоговом мини-окне ARMA DIAGNOSTIC VIEWS (посмотреть диагностику ARMA) выбрать опции IMPULSE RESPONSE и TABLE, а также определить предполагаемую величину импульса (внешнего шока или величину отклонения курса доллара) (рис. 5.3). При этом по умолчанию используется опция ONE STANDARD DEVIATION (одно стандартное отклонение), а длительность проводимого теста ограничивается 24 периодами (см. опцию PERIODS). Однако при необходимости количество тестируемых периодов можно изменить, как, впрочем, изменить и заданную величину импульса. В последнем случае надо в опции IMPULSE выбрать вариант USER SPECIFIED (по усмотрению пользователя) и самому установить требуемую величину начального импульса (внешнего шока).
Шаг 2. Интерпретация функции импульсного и накопленного импульсного ответаВ опции IMPULSE мы решили выбрать вариант по умолчанию — ONE STANDARD DEVIATION (одно стандартное отклонение). В случае выбора этой опции исходная величина внешнего шока приравнивается к стандартной ошибке коэффициента регрессии факторной лаговой переменной, т. е. к стандартной ошибке коэффициента регрессии USDOLLAR(-1) = 0,06527. При этом предполагается, что на первом шаге, когда внешний шок отсутствует, величина импульсного ответа равна стандартной ошибке уравнения регрессии -0,817803 (см. табл. 4.1).
В результате получим табл. 5.3, в которой содержится информация, характеризующая величину стандартной ошибки импульсного ответа AR-структуры на рост инновационной неопределенности, значения которой помещены в двух разделах Std. Err. Если бы вместо опции ONE STANDARD DEVIATION была бы выбрана опция USER SPECIFIED (по усмотрению пользователя), то тогда вместо величины инновационной неопределенности мы получили бы в разделах Std. Err. величину внешнего шока в виде стандартных ошибок факторной переменной, нарастающей по мере повышения инновационной неопределенности.
Таким образом, величина стандартной ошибки функции импульсного ответа позволяет оценить, как модель ARMA реагирует на единовременное шоковое воздействие (однократное резкое изменение курса доллара). В таблице 5.3 также приводится величина стандартной ошибки функции накопленного импульсного ответа. Последнюю функцию можно интерпретировать и как ответ на очередной текущий импульс (шоковое воздействие), но при условии, что аналогичные шоковые воздействия происходят непрерывно в течение всего исследуемого времени, начиная с 1-го периода.
Важным свойством стационарных моделей является то обстоятельство, что у них уровень инновационной неопределенности, как и величина ответа на импульс, асимптотически — по мере нарастания выборки (количества периодов) — стремятся к нулю. Это свидетельствует об устойчивости стационарных процессов к единовременным шоковым воздействиям. Причем в случае анализа стационарного AR-процесса EViews дает внизу вывода итогов асимптотическую оценку как величины импульсного ответа, так и уровня инновационной неопределенности с указанием, что они равны нулю. Однако в табл. 5.3 этих оценок нет, поскольку исследуется нестационарный процесс, в котором обе эти величины постоянно нарастают, не имея при этом четко ограниченных пределов.
Как легко увидеть в табл. 5.3, в 1-м периоде величина инновационной неопределенности незначительна, а ошибка импульсного ответа равна стандартной ошибке уравнения регрессии. Во 2-м периоде инновационная неопределенность возрастает в силу воздействия внешнего шока, величина которого приравнивается к стандартной ошибке коэффициента регрессии независимой лаговой переменой USDOLLAR(-1). Далее в последующие периоды величина инновационной неопределенности (см. оба столбца Std. Err.) нарастает как в функции импульсного, так еще больше и в функции накопленного импульсного ответа. Так, уровень инновационной неопределенности в функции импульсного ответа увеличивается с 0,03962 в 1 — м периоде до 0,16794 в 25-м периоде; соответственно в функции накопленного импульсного ответа эти цифры выросли с 0,03962 в 1-м периоде до 3,28261 в 25-м периоде.
Если при тестировании AR-структуры нестационарного процесса увеличить количество исследуемых периодов, то в результате уровень инновационной неопределенности и величина стандартной ошибки импульсного ответа в нестационарной модели еще больше вырастут к концу последнего периода.
Так, если в диалоговом мини-окне ARMA DIAGNOSTIC VIEWS в опции PERIODS установить 50 периодов вместо используемых по умолчанию 24, то уровень инновационной неопределенности в функции импульсного ответа будет равен 0,27308, а в функции накопленного импульсного ответа — 8,65349. Соответственно при 100 периодах эти цифры в последнем периоде будут существенно выше и равны 0,56117 и 28,4379.
Шаг 3. Построение графика функций импульсного и накопленного импульсного ответаПри желании функции импульсного и накопленного импульсного ответа можно получить и в графическом виде. С этой целью в диалоговом мини-окне ARMA DIAGNOSTIC VIEWS необходимо выбрать опции IMPULSE RESPONSE и GRAPH. Если мы при этом оставим те же опции, что установили при выводе данных, размещенных в табл. 5.3, то тогда получим следующие графики роста величины импульсного и накопленного импульсного ответа (рис. 5.4). Помимо удобств, связанных с наглядностью, эти графики позволяют также увидеть нижние и верхние границы интервалов, в рамках которых рассчитанная в EViews величина импульсного и накопленного импульсного ответа может колебаться. В качестве доверительного интервала для оценки величины этих функций берется диапазон в размере двух стандартных отклонений.
При желании функции импульсного и накопленного импульсного ответа можно получить и в графическом виде. С этой целью в диалоговом мини-окне ARMA DIAGNOSTIC VIEWS необходимо выбрать опции IMPULSE RESPONSE и GRAPH. Если мы при этом оставим те же опции, что установили при выводе данных, размещенных в табл. 5.3, то тогда получим следующие графики роста величины импульсного и накопленного импульсного ответа (рис. 5.4). Помимо удобств, связанных с наглядностью, эти графики позволяют также увидеть нижние и верхние границы интервалов, в рамках которых рассчитанная в EViews величина импульсного и накопленного импульсного ответа может колебаться. В качестве доверительного интервала для оценки величины этих функций берется диапазон в размере двух стандартных отклонений.
5.3. Влияние резких изменений курса доллара на смещение коэффициентов регрессии
Продолжим далее наш анализ устойчивости к воздействию внешних шоков нестационарного AR-процесса, описанного уравнением USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2). С этой целью составим рейтинг наиболее резких изменений в курсе доллара, зафиксированных за период с августа 1998 г. по апрель 2010 г. При этом в качестве критерия для отбора будем использовать величину изменения курса доллара за один месяц в процентах по модулю. В результате получилась табл. 5.4. Из нее следует, что три самых крупных колебания курса доллара наблюдались в сентябре и августе 1998 г., а также в январе 2009 г. Кроме того, из этой таблицы (см. раздел «Скачок курса доллара по сравнению с предыдущим месяцем, руб.») можно сделать вывод, что резкие скачки доллара по преимуществу были положительными. Так, из 20 наблюдений, включенных в этот рейтинг, в 15 случаях рубль резко укреплялся и лишь в пяти случаях резко падал. Причем в шестерку самых волатильных месяцев вошли только те месяцы, когда был зафиксирован резкий рост, а не падение курса доллара. С фундаментальной точки зрения это объясняется многолетней политикой Банка России по поддержанию слабого курса рубля, а с точки зрения статистического анализа этот факт можно подтвердить с помощью описательной статистики (см. табл. 4.4), показывающей значительную правостороннюю асимметрию в остатках.
Таблица 5.4, в которую включена топ-двадцатка самых волатильных (с августа 1998 г.) месяцев, понадобится для того, чтобы оценить надежность нашей прогностической модели. Вполне очевидно, что слишком сильные колебания курса доллара довольно существенно сказывались на качестве прогноза. Своего рода рекорд по неточности предсказания можно было бы установить в конце сентября 1998 г. при прогнозировании курса доллара на октябрь 1998 г. на основе данных за период с июня 1992 г. по сентябрь 1998 г. Проверим это утверждение. Однако прежде нам надо научиться оперативно изменять выборку данных в EViews, поскольку каждый раз импортировать новые данные нерационально в смысле затрат времени (см. алгоритм действий № 15).
Алгоритм действий № 15 Как в EViews можно быстро изменить выборку данныхЧтобы смоделировать ситуацию реального прогноза на октябрь 1998 г., необходимо оставить во временном ряде данные лишь за период с июня 1992 г. по сентябрь 1998 г. С этой целью надо в верхней строке рабочего файла выбрать опции QUICK /SAMPLE (быстро/выборка), после чего появится диалоговое мини-окно SAMPLE, в котором мы должны ввести текст: ©first 1998m08. Введенный в диалоговое мини-окно текст означает, что в выборке должны остаться данные с первого наблюдения по август 1998 г. Для справки заметим, что если бы мы захотели ограничить выборку снизу (например, с сентября 1998 г. до последнего наблюдения), то тогда команда в диалоговом мини-окне SAMPLE выглядела бы так: 1998т[email protected] last. А если бы нам потребовалось вновь использовать всю выборку, то в этом случае в диалоговое мини-окно надо было бы ввести команду @all.
После сокращения выборки (период уменьшили до 74 наблюдений — с июня 1992 г. по сентябрь 1998 г.) займемся решением уравнения регрессии (см. алгоритм действий № 6 «Как решить уравнение регрессии в EViews»). А затем делаем прогноз и соответственно сразу же находим остатки (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»). Вывод данных по уравнению регрессии у нас представлен в табл. 5.5.
В результате, согласно точечному прогнозу, составленному по этому уравнению регрессии, американский доллар в октябре 1998 г. должен был бы стоить 43 руб. 02 коп.! На самом деле за всю историю наблюдений за валютным рынком стоимость доллара никогда не достигала таких значений, а фактический его курс в конце октября 1998 г. равнялся 16 руб. 1 коп. Таким образом, разница (или остаток) составила 27 руб. и 1 коп.!!! Впрочем, столь неудачный прогноз — все-таки единственное исключение из всего временного ряда. Для справки заметим, что аналогичный прогноз, сделанный на ноябрь 1998 г., а тем более все последующие прогнозы уже не столь существенно отклонялись от фактического курса доллара. Так, согласно прогнозу на ноябрь 1998 г., рассчитанному на основе рыночных данных по курсу доллара за период с июня 1992 г. по октябрь 1998 г., американский доллар должен был стоить 16 руб. 75 коп. Однако фактическая стоимость доллара оказалась равна 17 руб. 88 коп., т. е. разница (остаток) составила 1 руб. 13 коп.
В чем же причины столь серьезной ошибки в прогнозе на октябрь 1998 г., сделанном с помощью уравнения регрессии USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2)? Причина вполне очевидна — беспрецедентный 103,2 %-ный скачок курса доллара в сентябре 1998 г. по сравнению с предыдущим месяцем. В результате этого колоссального внешнего шока оба коэффициента b и с в уравнении регрессии резко сместились в сторону предсказания необычно высокого роста, что характерно для статистических моделей с нестационарной ARMA-структурой. Смещение коэффициентов регрессии наглядно показано в табл. 5.6: если в уравнении регрессии, на основе которого был составлен прогноз на сентябрь 1998 г., первый коэффициент регрессии b был равен 1,6309, а второй коэффициент с = -0,6185, то уже в следующем месяце эти коэффициенты выросли соответственно до 4,3165 и -3,3297. Именно это значительное смещение в коэффициентах регрессии и привело к серьезному искажению в прогнозе на октябрь 1998 г. В пользу этого говорит и тот факт, что если бы мы воспользовались при прогнозе на октябрь 1998 г. коэффициентами регрессии, на основе которых делался прогноз на сентябрь 1998 г., то ошибка в прогнозе у нас получилось бы меньше. Наш прогноз равнялся бы 21 руб. 31 коп., т. е. разница с фактическим курсом доллара, равным 16 руб. 1 коп., составила бы 5 руб. 30 коп.
5.4. Стандартные и стьюдентизированные остатки, влияние выбросов на точность уравнения регрессии
Очевидно, что любое резкое повышение курса доллара приводит к возникновению так называемых выбросов, т. е. необычно больших остатков (разницы между фактическим и прогнозным курсом доллара), отрицательно влияющих на точность последующих прогнозов. Их определение можно взять в соответствующей литературе: «Выбросом среди остатков называется остаток, который по абсолютной величине значительно превосходит остальные и отличается от среднего по остаткам на три, четыре или даже более стандартных отклонений»[13].
Следовательно, решая уравнение регрессии, надо всегда проверять величину полученных остатков, а также оценивать риск, связанный с влиянием выбросов на смещение коэффициентов в уравнении регрессии. Очевидно, что в случае выявления во временном ряде наблюдения, имеющего остаток, равный трем и более стандартным отклонениям, нужно всегда проводить тщательный анализ с точки зрения его влияния на точность составленного прогноза. Впрочем, во многих статистических программах критическими считаются и те случаи, когда величина остатка больше двух стандартных отклонений.
Теперь посмотрим, какие результаты дал бы анализ остатков по прогнозу на октябрь 1998 г., сделанному на основе данных по курсу доллара с июня 1992 г. по сентябрь 1998 г.
Алгоритм действий № 16 Как в Excel можно найти стандартные остаткиВ Excel анализ остатков на наличие в них выбросов проводится следующим образом. Решая уравнение регрессии, нужно действовать согласно алгоритму № 3 «Как решить уравнение регрессии в Excel». После того как на экране появится диалоговое мини-окно РЕГРЕССИЯ, в параметре ОСТАТКИ нужно установить две опции: ОСТАТКИ и СТАНДАРТИЗИРОВАННЫЕ ОСТАТКИ (рис. 5.5).
Используя в Excel опции ОСТАТКИ и СТАНДАРТИЗИРОВАННЫЕ ОСТАТКИ, мы получили после решения уравнения регрессии следующие данные по остаткам, часть из которых (за 1997–1998 гг.) поместили в табл. 5.7. Нужно сразу заметить, что в Excel стандартные (в литературе чаще используется последнее определение, хотя иногда встречается и термин «стандартизированные») остатки находятся путем деления их фактических, а не абсолютных значений. Поэтому в нашей таблице есть наблюдения как с положительными (в том случае, когда прогноз оказался ниже фактического курса доллара), так и с отрицательными (когда прогноз оказался выше фактического курса доллара) стандартными остатками.