Чтобы проверить наше последнее предположение, нам пришлось создать две дополнительные фиктивные переменные: DUMMY09 и DUMMY10. При этом DUMMY09 принимает нулевые значения с августа 1992 г. и до августа 1998 г. (включительно), а область нулевых значений — для DUMMY10 с августа 1992 г. до сентября 1998 г. (включительно). Во всех последующих наблюдениях вплоть до апреля 2010 г. эти фиктивные переменные равны единице. Две дополнительные фиктивные переменные потребовались нам для создания новых переменных наклона USDOLLAR(-1) × DUMMY10 и USDOLLAR(-2) × DUMMY09. После чего в диалоговое мини-окно EQUATION ESTIMATION была введена формула в следующем виде: USDOLLAR USDOLLAR(-1) USDOLLAR(-2) DUMMY DUMMY10 × USDOLLAR(-1) DUMMY09 × USDOLLAR(-2).
В результате мы получили вывод данных для уравнения регрессии с новыми фиктивными переменными наклона. Судя по табл. 5.15, все коэффициенты в этом уравнении регрессии оказались статистически значимыми, поскольку уровень их значимости оказался равен нулю. Следовательно, нулевую гипотезу об отсутствии в динамике курса доллара в августе 1998 г. структурных изменений сдвига и отсутствии в сентябре и октябре 1998 г. структурных изменений наклона можно считать опровергнутой с 1 %-ным уровнем значимости. Это и позволяет нам взять за основу альтернативную гипотезу, что эти структурные изменения имели существенное значение.
Из таблицы 5.15 можно сделать вывод, что до августа 1998 г. динамика курса доллара описывалась трендом, имеющим следующую формулу:
USDOLLAR = 1,927 × USDOLLAR(-1) — 0,928 × USDOLLAR(-2) (5.9.1)
При этом интерпретация уравнения (5.9.1) была следующая: во-первых, рост на 1 руб. курса доллара в текущем месяце способствовал повышению курса доллара в будущем месяце в среднем на 1,927 руб.; во-вторых, рост на 1 руб. курса доллара в прошлом месяце способствовал снижению курса доллара в будущем месяце в среднем на -0,928 руб.
В августе 1998 г., когда произошел структурный сдвиг, формула тренда приобрела иной вид:
USDOLLAR = 1,927 × USDOLLAR(-1) — 0,928 × USDOLLAR(-2) + 1,865 × DUMMY (5.9.2)
Интерпретация формулы (5.9.2) аналогична предыдущей, за исключением того, что появление в уравнении фиктивной переменной DUMMY свидетельствует о единовременном повышении курса доллара в августе 1998 г. на 1,865 руб.
В сентябре 1998 г., когда имело место первое структурное изменение наклона, формула тренда снова изменилась:
USDOLLAR = 1,927 × USDOLLAR(-1) — 0,928 × USDOLLAR(-2) + 0,754 × USDOLLAR(-2) × DUMMY09 + 1,865 × DUMMY
(5.9.3)
Формула (5.9.3) отличается от уравнения (5.9.2) тем, что у нее появилась фиктивная переменная наклона USDOLLAR(-2) × DUMMY09, показывающая увеличение коэффициента регрессии у переменной
USDOLLAR(-2) на 0,754. Следовательно, с этого месяца вклад переменной USDOLLAR(-2) в динамику курса доллара с учетом структурного наклона, стал следующим: рост на 1 руб. курса доллара в прошлом месяце способствовал снижению курса доллара в будущем месяце в среднем на -0,174 руб.
В октябре 1998 г. после второго структурного изменения наклона наша формула приобрела следующий вид:
USDOLLAR = 1,927 × USDOLLAR(-1) — 0,818 × USDOLLAR(-1) × DUMMY10- 0,928 USDOLLAR(-2) + 0,754 × USDOLLAR(-2) × DUMMY09 + 1,865 × DUMMY
(5.9.4)
Формула (5.9.4) отличается от предыдущей лишь тем, что у нее появилась фиктивная переменная наклона USDOLLAR(-1) × DUMMY10, которая показывает уменьшение коэффициента регрессии у переменной USDOLLAR(-1) на -0,818. Следовательно, с октября 1998 г. вклад переменной USDOLLAR(-2) в динамику курса доллара изменился таким образом: рост на 1 руб. курса доллара в текущем месяце способствовал повышению курса доллара в будущем месяце в среднем на 1,109 руб.
Следует иметь в виду, что формула (5.9.4) отличается, например, от формулы (3.4), описывающей аналогичный период, поскольку у этих формул разное число оцениваемых параметров.
На диаграмме, представленной на рис. 5.14, изображен график, наглядно показывающий характер структурных изменений в динамике курса доллара, произошедших во время кризиса 1998 г. В частности, здесь можно увидеть как структурный сдвиг, произошедший в августе 1998 г., так и первое, и второе структурные изменения наклона, имевшие место в сентябре и октябре 1998 г.
Математические подробности по тесту Д. ГуйаратиАмериканский экономист Д. Гуйарати для оценки структурных изменений в динамике тренда, происходящих в момент времени t*, предложил оценивать параметры следующего уравнения регрессии с фиктивными переменными:
Yt = а + b × Zt + с × t + d × (Zt × t) + е, (5.10)
где Yt — зависимая переменная; t — время;
а, b, с, d — параметры уравнения регрессии;
е — ошибка (остатки);
Zt — фиктивная переменная, которая при t < t' равна нулю, а при t ≥ t' равна единице.
Следовательно для момента времени t < t' мы получим следующее уравнение регрессии:
Zt= 0 => Y,= а + b × 0 + с × t + d × (0 × t) + e=>Yt = a+ c × t + e. (5.10.1)
Соответственно для момента времени t> f уравнение примет такой вид:
Zt= 1 => Yt = a+b × l+c × t + d × (1 × t) + е =>
=>Yt = (a+b) + (c+d) × t + e. (5.10.2)
Сравнив уравнение (5.10.1) с уравнением (5.10.2), нетрудно прийти к выводу, что при Zt= 1 свободный член уравнения а2=(а+ b), а коэффициент регрессии — c2× t = (c+d) × t. Соответственно при Zt= 0 свободный член уравнения а1 = а, а коэффициент регрессии — с1× t= с × t. Таким образом, параметр b можно рассматривать как разницу между а1 и а2, т. е. между свободными членами уравнений (5.10.1) и (5.10.2). В свою очередь параметр d следует рассматривать как разницу между c1 и с2, т. е. между коэффициентами регрессии уравнений (5.10.1) и (5.10.2). Следовательно, параметр b оценивает структурный сдвиг, а параметр d — структурное изменение наклона в уравнении регрессии, произошедшее в момент времени t'. Оценку параметров bud можно провести, решив уравнение регрессии, а затем оценив их значимость при помощи t-критерия Стьюдента.
Подробности по этой теме можно узнать, ознакомившись с соответствующей литературой[17].
Таким образом, с помощью метода, предложенного американским экономистом Д. Гуйарати, нам удалось выяснить, что во временном ряде по ежемесячному курсу доллара, охватывающем период с июня 1992 г. по апрель 2010 г., после августовского дефолта 1998 г. произошли следующие структурные изменения: во-первых, в августе 1998 г. произошел структурный сдвиг; во-вторых, в сентябре 1998 г. имело место первое структурное изменение наклона (изменился коэффициент регрессии факторной переменной с лагом в два месяца); в-третьих, в октябре 1998 г. имело место второе структурное изменение наклона (изменился коэффициент факторной переменной с лагом один месяц).
5.7. Построение статистической модели с оптимальным диапазоном интервального прогноза
А теперь посмотрим, подтвердит ли эти структурные изменения во временном ряде тест Чоу на точность прогноза. С этой целью проведем тестирование модели USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2), построенной на основе данных за период с июня 1992 г. по апрель 2010 г. При этом проверять на наличие структурной стабильности будем такие месяцы, как июль — декабрь 1998 г. и январь 1999 г., поскольку тест Д. Гуйарати показал наличие структурных изменений в августе — октябре 1998 г., но для большей надежности мы решили несколько расширить этот временной диапазон.
В результате получилась табл. 5.16, согласно которой уровень значимости F-критерия и LR-статистики для июля — октября 1998 г. оказался равен нулю, что опровергает нулевую гипотезу о структурной стабильности временного ряда относительно тестируемых наблюдений. Кстати, на основе этого теста аналогичный вывод можно сделать и для всех наблюдений с августа 1992 г. по октябрь 1998 г. включительно; в то время как уровень значимости F-критерия и LR-статистики по итогам проведения теста Чоу на точность прогноза относительно ноября 1998 г. и остальных, более поздних наблюдений (за исключением января — февраля 2009 г., но этот факт мы рассматриваем как временное явление) будет выше 0,05. Отсюда можно сделать вывод, что нулевая гипотеза о наличии структурной стабильности в этой части временного ряда подтверждается, что совпадает с аналогичными результатами, полученными с помощью метода Д. Гуйарати.
Чтобы построить статистическую модель с приемлемым диапазоном интервального прогноза, попробуем — с учетом итогов теста Чоу на точность прогноза — исключить из расчетной базы данных период с июля 1992 г. по октябрь 1998 г. (включительно). После чего на основе рыночных данных с ноября 1998 г. по апрель 2010 г. с помощью модели USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2) построим новое уравнение регрессии, вывод итогов которого представлен в табл. 5.17. Как нетрудно заметить, все переменные, включенные в это уравнение регрессии, оказались статистически значимыми (Prob. = 0). Далее эту модель будем называть нестационарной моделью с оптимизированным временным рядом, чтобы отличить ее от модели с полным временным рядом.
Чтобы построить статистическую модель с приемлемым диапазоном интервального прогноза, попробуем — с учетом итогов теста Чоу на точность прогноза — исключить из расчетной базы данных период с июля 1992 г. по октябрь 1998 г. (включительно). После чего на основе рыночных данных с ноября 1998 г. по апрель 2010 г. с помощью модели USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2) построим новое уравнение регрессии, вывод итогов которого представлен в табл. 5.17. Как нетрудно заметить, все переменные, включенные в это уравнение регрессии, оказались статистически значимыми (Prob. = 0). Далее эту модель будем называть нестационарной моделью с оптимизированным временным рядом, чтобы отличить ее от модели с полным временным рядом.
В результате точечный прогноз по курсу доллара на май 2010 г. оказался равен 29,287 руб. Таким образом, последняя цифра лишь немного отклонилась от 29,3137 руб., т. е. от точечного прогноза на май 2010 г., составленного по статистической модели с полным временным рядом (на основе данных с июня 1992 г. по апрель 2010 г.).
Далее составим точечные и интервальные прогнозы как для всех предыдущих наблюдений, включенных в базу данных, начиная с ноября 1998 г., так и на май 2010 г. (это наблюдение в базу данных не вошло). При этом будем пользоваться алгоритмом действий № 11 «Как в EViews построить точечный прогноз» и алгоритмом действий № 12 «Как в EViews построить интервальные прогнозы».
В результате появилась возможность сопоставить заданные уровни надежности с фактической долей точных интервальных прогнозов. После проведения соответствующих подсчетов получилась табл. 5.18. Судя по этой таблице, доля точных прогнозов у предложенной модели оказалась незначительно ниже заданного уровня при 99,9 %-ном и 99 %-ном уровнях надежности. В то время как при 95 %-ном уровне надежности и ниже доля точных интервальных прогнозов становится на 0,7 процентного пункта выше заданного уровня. По мере снижения заданного уровня надежности эта положительная разница растет, достигая максимума при 40 %-ном уровне надежности, когда она равна 31,2 процентного пункта.
Сравнив табл. 5.18 и табл. 4.8, можно сделать следующие выводы. Во-первых, фактическая точность интервальных прогнозов, составленных по нестационарной модели с оптимизированным временным рядом, как и точность интервальных прогнозов, составленных по аналогичной модели с полным временным рядом, при 95 %-ном уровне надежности оказалась выше заданного уровня. Во-вторых, фактическая точность интервальных прогнозов, рассчитанных по модели с полным временным рядом, в среднем немного выше, чем у модели с оптимизированным временным рядом, хотя при 95 %-ном уровне надежности эта разница и незначительна.
Однако последняя модель опережает первую по таким важным параметрам, как средний диапазон интервального прогноза (в рублях); средний диапазон интервального прогноза (в процентах от среднего фактического курса); и индекс оптимальности интервальных прогнозов (см. табл. 6.24).
Стоит также отметить, что благодаря оптимизации временного ряда нам удалось получить временной ряд с приемлемым диапазоном интервального прогноза. В этом можно убедиться, если познакомиться с табл. 5.19, в которой в целях экономии места помещена лишь часть интервальных прогнозов.
Так, в ноябре 1998 г. общий диапазон интервального прогноза (верхняя граница интервального прогноза минус нижняя граница интервального прогноза) при 95 %-ном уровне надежности составил 2 руб. 86,53 коп. при фактическом курсе доллара, равном 17 руб. 88 коп. В свою очередь при прогнозе на май 2010 г. общий диапазон интервального прогноза был равен 2 руб. 88,07 коп., а фактический курс доллара составил 30 руб. 49,56 коп. Следовательно, в ноябре 1998 г. общий диапазон интервального прогноза составлял 16,03 % от фактической стоимости доллара, в то время как в мае 2010 г. эта цифра равнялась 9,42 %.
Нетрудно также заметить, что за счет уменьшения стандартного отклонения (в структурно стабильном временном ряде, естественно, наблюдается более низкий уровень волатильности) ширина диапазона интервального прогноза в табл. 5.19 оказалась несколько меньше, чем в табл. 4.9.
Контрольные вопросы и задания1. Какую формулу нужно ввести в мини-окно EQUATION SPECIFICATION, чтобы проверить AR-структуру статистической модели на стационарность? Как находятся обратные единичные корни? При каком значении обратных единичных корней авторегрессионный процесс считается нестационарным?
2. Чем различаются функция импульсного ответа и функция накопленного импульсного ответа? Как изменяется инновационная неопределенность и импульсный ответ в нестационарной и в стационарной AR-моделях?
3. Почему в шестерку самых волатильных месяцев вошли только те месяцы, когда был зафиксирован резкий рост, а не падение курса доллара? Как этот факт можно объяснить с фундаментальной точки зрения? Как это влияет на распределение остатков?
4. Чем можно объяснить большую неточность прогноза, составленного на октябрь 1998 г.? Какие остатки считаются выбросами, по мнению Н. Дрейпера и Г. Смита? Как величина выброса определяется во многих статистических программах? Что такое стьюдентизированные остатки и чем они отличаются от стандартных остатков? Какие остатки точнее учитывают волатильность во временном ряде?
5. В чем сходство и различие тестов Чоу на структурную стабильность и на точность прогноза? Какой из этих тестов лучше подходит для анализа стабильности статистической модели относительно последнего наблюдения? Как можно изменить статистическую модель в том случае, когда тест на точность прогноза свидетельствует о структурной нестабильности, возникшей в модели в результате резкого изменения курса доллара в последнем наблюдении?
6. Чем отличается структурное изменение в виде тренда со сдвигом от структурного изменения в виде тренда с наклоном? С помощью какого теста выявляются такого рода изменения во временном ряде? Какие структурные изменения в динамике курса доллара к рублю были выявлены в августе, сентябре и октябре 1998 г.?
7. Почему из расчетной базы данных, на которых строилась статистическая модель USDOLLAR = а × USDOLLAR(-l) + b × US-DOLLAR(-2), была исключена часть наблюдений? Удалось ли в результате получить статистическую модель с оптимальным диапазоном интервального прогноза? Вывод свой обоснуйте.
Глава 6 Построение стационарной статистической модели
6.1. Тестирование исходного и логарифмического временнoго ряда на стационарность
В главе 5 с помощью анализа остатков на выбросы, тестов Чоу на стабильность и точность прогноза, а также метода Гуйарати по определению характера структурных изменений была выявлена нестабильность параметров уравнения регрессии USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2). Причем эта проблема особенно обостряется во время резких колебаний курса доллара (в первую очередь в периоды кризисов 1998 г. и 2008–2009 гг.). Мы также выяснили, что нестабильность параметров в этом уравнении регрессии обусловлена не только высокой волатильностью на рынке, но и его нестационарной AR-структурой. Об этом, в частности, свидетельствует тестирование этого уравнения регрессии на импульсный ответ (см. алгоритм № 14).
В связи с этим нам предстоит задача по созданию уравнения регрессии, обладающего стационарной AR- или ARM А-структурой. Напомним нашим читателям, что отличие первой от второй заключается в том, что первое уравнение представляет уравнение авторегрессии, а второе — уравнение авторегрессии со скользящей средней.
Вот что пишет о специфике стационарных временных рядов профессор статистики Стэнфордского университета Т. Андерсон: «Предполагается, что случайные составляющие имеют в каждый момент времени одинаковые дисперсии и некоррелированны. Они могут представлять собой ошибки наблюдения или нерегулярности иного рода. Предположения о равенстве дисперсий и отсутствии корреляции являются определенным приближением к действительному положению вещей…Иногда наблюдения лучше соответствуют условиям равенства дисперсий и аддитивности ошибки, если преобразовать масштаб измерений изучаемой величины. Например, в ряде экономических исследований производится анализ не самих цен, а их логарифмов…»[18]
Попробуем получить стационарные ряды, взяв логарифмы от исходного уровня временного ряда, содержащего данные по курсу доллара за период с июня 1992 г. по июнь 2010 г. Однако сначала убедимся, что исходный временной ряд, содержащий данные по ежемесячному курсу доллара за период с июня 1992 г. по июнь 2010 г., действительно нестационарен, и с этой целью воспользуемся указаниями алгоритма действий № 21.