Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews - Владимир Брюков 16 стр.


log(USDollar) = 0,105219 + 0,968257 × log(USDollar(-l)) + 0,253616 et-1, (6.9)

где еt-1 — прошлая ошибка (отклонение фактического курса доллара от его прогноза), которая в уравнении (6.8) представлена скользящей средней МА(1).

К сожалению, в отличие от формулы (6.5) формулу (6.9) нельзя путем потенцирования привести к исходному временному ряду, что обусловлено применением в этой статистической модели скользящей средней, рассчитанной применительно к остаткам, полученным от логарифмического ряда. Поэтому интерпретация формулы (6.9) будет достаточно затруднительной, поскольку мы вынуждены ее дать относительно логарифмического, а не исходного временного ряда.

Тем не менее все-таки эту интерпретацию нужно представить, чтобы смысл уравнения (6.9) был для читателя более понятен. Во-первых, рост на одну единицу логарифмического значения курса доллара в текущем месяце в среднем способствовал повышению логарифмического значения курса доллара в прогнозируемом месяце на 0,968 ед. (при исходном уровне логарифмического значения курса доллара, равном 0,105 ед.). Во-вторых, рост на одну единицу отклонения логарифмического значения фактического курса доллара от его прогноза способствовал повышению логарифмического значения курса доллара в прогнозируемом месяце в среднем на 0,254 ед.

6.3. Тестирование модели авторегрессии со скользящей средней на автокорреляцию в остатках и проверка стационарности ее ARMA-структуры

Теперь посмотрим, есть ли автокорреляция в остатках у полученной статистической модели, а потому вновь проведем тестирование с помощью LM-теста Бройша — Годфри. Причем при выполнении теста в диалоговом мини-окне LAG SPECIFICATION (лаговая спецификация) нужно, как и в предыдущем случае, установить 1, поскольку в нашем уравнении авторегрессии со скользящим средним ARMA(1,1) как факторная переменная, так и скользящая средняя имеют один лаг (см. формулу (6.8)).

По результатам проведения этого теста у нас получилась табл. 6.7, данные которой уверенно свидетельствуют об отсутствии автокорреляции в остатках. Такой вывод можно сделать исходя из того, что уровень значимости как основного критерия теста Obs × R-squared (Наблюдения × R2), так и дополнительного — F-statistic (F-критерия) существенно выше 0,05.

Теперь протестируем ARMA-структуру этого уравнения на стационарность, воспользовавшись при этом алгоритмом действий № 13. В результате у нас получится табл. 6.8, свидетельствующая, что ARMA-структура этой статистической модели получилась стационарной, поскольку все обратные корни в этом уравнении лежат внутри единичного круга. Этот вывод можно найти в нижней части этой таблицы.

Далее посмотрим, как стационарная ARM А-структура уравнения log(USDollar) = с + а × log(USDollar(-l)) +nА(1) влияет на надежность полученных с ее помощью прогнозов, поэтому, воспользовавшись алгоритмом действий № 14, протестируем эту статистическую модель на импульсный ответ.

При этом в опции IMPULSE (импульс) мы выбрали вариант по умолчанию — ONE STANDARD DEVIATION (одно стандартное отклонение), т. е. поступили также, как и в главе 4 при анализе импульсного ответа для уравнения USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2).

В результате получим табл. 6.9, в которой содержится информация, характеризующая специфику импульсного и накопленного импульсного ответа этой ARMA-модели. Поскольку мы выбрали величину импульса в размере одного стандартного отклонения, то EViews в этом случае выдает нам информацию об уровне инновационной неопределенности, полученной после оценки размера стандартной ошибки импульсного ответа. Важным свойством стационарных моделей является то обстоятельство, что у них как уровень инновационной неопределенности, так и величина стандартного отклонения импульсного ответа — по мере увеличения количества тестируемых периодов — стремятся к нулю. Судя по табл. 6.9, уровень инновационной неопределенности и величина ответа на импульс асимптотически у стационарной модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1) действительно стремятся к нулю. При этом в нижней части раздела Response и крайнего правого раздела Std. Err. дается асимптотическая оценка того, что эти параметры равны нулю.

Кроме того, в табл. 6.9 хорошо видно, что по мере увеличения количества исследуемых периодов величина стандартного отклонения у накопленного импульсного ответа (см. раздел таблицы Accumulated) и уровень накопленной инновационной неопределенности (см. раздел в центре таблицы — Sid. Err.) стремятся к определенному асимптотическому пределу, значение которого приводится внизу. Следует заметить, что у статистической модели с нестационарной ARMA-структурой указанный предел отсутствует.

В целях экономии места в табл. 6.9 приведена лишь часть данных. Однако эта информация в наглядном виде представлена на рис. 6.6, который полностью подтверждает наши выводы. Кроме того, на рисунке точечными линиями с двух сторон обозначены доверительные интервалы, показывающие возможную погрешность в оценке величины импульсного и накопленного импульсного ответов.

Алгоритм действий № 23 Как сравнить коррелограмму остатков стационарной модели с ее теоретическим аналогом

Насколько хорошо построена стационарная модель, можно судить по оценке соответствия фактических значений коррелограммы остатков их теоретическим значениям. С этой целью воспользуемся опциями VIEW/ARMA STRUCTURE (посмотреть/структура модели ARMA). В результате на экране появится диалоговое мини-окно ARMA DIAGNOSTIC VIEWS (посмотреть диагностику модели ARMA), в которой нужно выбрать параметр CORRELOGRAM (рис. 6.7). Причем если нам нужна коррелограмма в табличной форме, то в опции DISPLAY мы выбираем надпись TABLE, а если в виде графика, то следует выбрать надпись GRAPH. При этом по умолчанию составляется коррелограмма для 24 лагов, но при необходимости пользователь может выбрать и иное количество лагов.

В таблице 6.10 представлены как фактические, так и теоретические значения коррелограммы остатков, полученных после решения уравнения регрессии log(USDollar) = с + а × log(USDollar(—1)) + МА(1). В таблице представлены значения автокорреляционной и частной автокорреляционной функций (т. е. автокорреляция между двумя лагами без учета влияния других промежуточных временных лагов). Как вычисляются коэффициенты автокорреляции и частной автокорреляции, можно уточнить в формулах (3.7–3.9).

Важной особенностью коррелограммы остатков, полученных по стационарным моделям, является то, что с увеличением величины лага значения автокорреляционной функции медленно, но с завидным постоянством убывают к нулю, в то время как частная автокорреляционная функция начинает колебаться около нуля уже со второго лага, при этом то немного вырастая, то убывая.

Стационарная модель считается хорошо построенной, если фактические значения коррелограммы окажутся близкими к ее теоретическим значениям. Как видим, в этом случае у нас это получилось.

Близость между фактическими и теоретическими значениями коррелограммы наглядно представлена на рис. 6.8. При этом теоретические значения коррелограммы с целью большей наглядности обозначены на рисунке горизонтальной линией, а фактические значения вертикальными линиями.

6.4. Оценка стабильности стационарной модели авторегрессии со скользящей средней

На основе данных за период с июня 1992 г. по июнь 2010 г. необходимо с помощью модели log(USDollar) = с + а × log(USDollar(-1)) + МА(1) составить точечный и интервальный прогнозы по курсу доллара на июль 2010 г. Однако прежде проведем анализ стандартных и стьюдентизированных остатков, полученных в этой модели, на предмет наличия выбросов, причем особое внимание будем обращать на наличие выбросов в последних наблюдениях, которые в большей степени могут повлиять на точность текущего прогнозирования. Для расчета стандартных и стьюдентизированных остатков следует воспользоваться алгоритмами действий № 16 и 17.

В результате у нас получилась табл. 6.11, а также диаграмма стьюдентизированных остатков на рис. 6.9. Если эту таблицу сравнить с табл. 5.9, то выяснится следующее важное обстоятельство. В статистической модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1)из 11 выбросов, выявленных с помощью стандартных и стьюдентизированных остатков, шесть выбросов приходятся на период 1992–1993 гг., т. е. имели место в период самых первых наблюдений. В свою очередь остальные четыре выброса произошли с августа по ноябрь 1998 г., в период после дефолта. В то же время в период глобального финансового кризиса в остатках этой модели обнаруживается лишь один выброс, относящийся к январю 2009 г.

Для справки заметим, что в остатках, получившихся после решения уравнения регрессии USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2), имели место девять выбросов. Причем до августа 1998 г. в этой модели выбросы не выявлены, но зато было пять выбросов после августовского дефолта — с августа по декабрь 1998 г. и четыре выброса в период глобального финансового кризиса — в январе, феврале, марте и мае 2009 г. Таким образом, в последние годы стационарная модель log(USDollar) = с + а × log(USDollar(-l)) + МА(1) демонстрирует гораздо большую стабильность, чем нестационарная модель USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2).

На рисунке 6.9 приведена диаграмма, из которой хорошо видно, что, за исключением одного уже упомянутого случая, выбросы в стационарной модели после 1998 г. уже не наблюдались.

В главе 4 уже говорилось, что тест Чоу на точность прогноза хорошо подходит для анализа стабильности статистической модели относительно последнего наблюдения. Поэтому мы воспользовались этим тестом, чтобы еще раз убедиться в стабильности модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1) относительно июня 2010 г. (см. алгоритм действий № 19). В результате у нас получилась табл. 6.12. Судя по уровню значимости F-критерия (F-statistic) и логарифма правдоподобия (Log likelihood ratio), можно сделать вывод, что нулевая гипотеза о структурной стабильности статистической модели относительно последнего наблюдения подтверждается с большим уровнем надежности. Отметим еще раз, что нулевая гипотеза может быть отвергнута, если уровень значимости (Probability) F-критерия и логарифма правдоподобия будет ниже 0,05.

6.5. Оценка точности стационарной модели ARMA

Поскольку мы уже убедились в относительной стабильности стационарной модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1), то теперь можем сделать точечный прогноз на июль 2010 г. на основе данных за период с июня 1992 г. по июнь 2010 г. (см. алгоритм действий № 11 «Как в EViews построить точечный прогноз»). При этом следует иметь в виду, что составление прогнозов по логарифмическому временному ряду имеет некоторую специфику. По умолчанию диалоговое мини-окно FORECAST (прогноз) при работе с логарифмическим рядом в опции SERIES ТО FORECAST (ряд для прогноза) указывает на файл с данными для исходного временного ряда USDOLLAR (рис. 6.10). В этом случае прогнозы будут даваться не в логарифмическом, а в исходном виде, т. е. в том виде, который обычно необходим для прогноза по валютному рынку. Однако при необходимости пользователь может самостоятельно поставить «галочку» у файла LOG(USDOLLAR) и получить прогнозы в логарифмическом виде.

В результате мы получили табл. 6.13, в которой наряду с оценкой точности стационарной прогностической модели log(USDollar) = с + а × log(USDollar(-1)) + МА(1) поместили и оценку точности нестационарной статистической модели USDOLLAR = а × USDOLLAR(-l) + а × USDOLLAR(-2) за период с июня 1992 г. по июнь 2010 г.

О содержательной интерпретации параметров, представленных в табл. 6.13, мы уже говорили (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»).

Нетрудно заметить, что хотя в целом по уровню точности обе модели имеют довольно близкие оценки, тем не менее стационарная модель по ряду показателей уступает нестационарной модели. Так, довольно существенным кажется отклонение по величине средней ошибки по модулю (Mean Absolute Error) и по величине средней ошибки по модулю в процентах (Mean Absolute Percentage Error). Например, в целом за весь период средняя ошибка по модулю для стационарной модели оказалась на 2,45 процентного пункта выше, чем у нестационарной, а по величине средней ошибки по модулю в процентах — почти на 0,46 пункта.

Однако если посмотреть, как изменялась точность обеих статистических моделей в различные периоды времени, то начиная с 1999 г. стационарная модель дает более точные прогнозы. В частности, в период с января 1999 г. по июнь 2010 г. средняя точность стационарной модели оказалась выше точности нестационарной модели на 0,2 коп. по модулю (см. цифры, выделенные жирным шрифтом в табл. 6.14). А с января 2009 г. по июнь 2010 г. эта разница составила уже 8,7 коп.

Естественно, что и по величине средней точности прогноза (в % по модулю) стационарная модель с января 1999 г. также дает более точные прогнозы. В частности, в период с января 1999 г. по июнь 2010 г. средняя точность стационарной модели (в % по модулю) оказалась выше точности нестационарной модели на 0,08 процентного пункта (см. цифры, выделенные жирным шрифтом в табл. 6.15). В свою очередь с января 2009 г. по июнь 2010 г. эта разница составила уже более 0,26 процентного пункта. С учетом этого можно сделать вывод, что точность стационарной статистической модели за последние 11,5 лет оказалась выше, чем у нестационарной модели.

Воспользовавшись диалоговым мини-окном FORECAST, мы получили не только оценку точности прогноза для стационарной статистической модели log(USDollar) = с + а × log(USDollar(-1)) + МА(1), но и файл с точечными прогнозами USDOLLARF за период с июля 1992 г. по июль 2010 г. Открыв этот файл, мы выяснили, что точечный прогноз на июль 2010 г. оказался равен 31 руб. 19 коп., однако фактический курс доллара в июле 2010 г. был равен 30 руб. 19 коп. Следовательно, разница составила 1 руб. Посмотрим, попал ли фактический курс доллара в диапазон интервального прогноза?

Однако, прежде чем это сделать, проверим остатки, полученные по модели log(USDollar) = с + а × log(USDollar(-l)) + МА(1), на нормальное распределение и на стационарность (см. алгоритм действий № 9).

В первом случае откроем файл RESID и выберем опции VIEW (смотреть)/DESCRIPTIVE STATISTICS (описательная статистика)/ STATS TABLE (таблица со статистикой). При этом следует иметь в виду, что проверку на нормальное распределение остатков целесообразно проводить относительно логарифмических остатков, поскольку наша статистическая модель построена на логарифмическом временном ряде. Логарифмические остатки нетрудно найти, если при составлении прогнозов в диалоговом мини-окне FORECAST (прогноз) поставим «галочку» у файла LOG(USDOLLAR) (см. рис. 6.6). В результате мы получили табл. 6.16.

Судя по тому, что коэффициент асимметрии (Skewness) в табл. 6.16 положителен, можно прийти к выводу, что в распределении остатков, полученных по стационарной модели, наблюдается положительная асимметрия. Отсюда можно сделать вывод, что в динамике курса доллара к рублю чаще наблюдались резкие (вполне очевидно, что незначительные плавные колебания курса легко поддаются прогнозированию) подъемы, чем аналогичные падения. В свою очередь величина коэффициент эксцесса (Kurtosis) существенно выше 3, что свидетельствует об «островершинном» распределении остатков. По сути, это означает, что в этом распределении имеется ярко выраженное ядро плотности распределения, внутри которого диапазон колебаний величины остатков незначителен, и рассеянное «гало», где разброс колебаний величины остатков весьма значителен. Поскольку величина тестовой статистики Жарка — Бера составила 11990,08, а уровень ее значимости (Probability) оказался равен нулю, то, следовательно, мы вынуждены отвергнуть гипотезу о нормальном распределении остатков. Поскольку, как мы уже говорили нашим читателям, при уровне значимости критерия Жарка — Бера (Probability) меньше 0,05 нулевая гипотеза о нормальном распределении отклоняется.

В EViews есть возможность посмотреть в графическом виде оценку ядра плотности распределения с помощью опций DISTRIBUTION/ KERNEL DENSITY GRAPHS… (распределение/графики ядра плотности распределения). В появившемся мини-окне KERNEL DENSITY (ядро плотности распределения) установим опцию EPANECHNICOV. В результате получим рис. 6.11, наглядно показывающий «островершинный» характер распределения остатков с правосторонней асимметрией.

Для проверки остатков на стационарность воспользуемся расширенным тестом Дикки — Фуллера. Следует заметить, что проверку остатков на стационарность также целесообразно проводить относительно логарифмических остатков. После проведения тестирования мы убедились, что получили стационарные остатки (табл. 6.17). Поскольку статистика теста Дикки — Фуллера в этом случае составила -15,61466, а ее значимость (Probability) равна 0,0000, то нулевая гипотеза о том, что D(RESID) имеет единичный корень, отвергается. Следовательно, мы можем принять альтернативную гипотезу о стационарности полученных остатков.

Несмотря на то что остатки, полученные по стационарной модели, нельзя считать нормально распределенными, мы тем не менее уже знаем, что при больших выборках можно строить интервальные прогнозы исходя из их нормального распределения. Поэтому нашим следующим шагом будет расчет интервальных прогнозов не только на июль 2010 г. (курс доллара по этому месяцу не включен в базу данных), но и для всех наблюдений, на основе которых составлена статистическая модель log(USDollar) = с + а × log(USDollar(-1)) + МА(1). Это поможет нам проверить соответствие составленных интервальных прогнозов нормальному распределению, поскольку уровень надежности для интервальных прогнозов рассчитывался исходя из предположения о нормальном распределении остатков. Попутно заметим, что интервальные прогнозы будут построены начиная с июля 1992 г., поскольку первое наблюдение во временном ряде нам потребовалось для создания факторной переменной log(USDollar(-l).

Назад Дальше