Для импорта ежемесячных данных по курсу доллара (на конец месяца) за период с июня 1992 г. по апрель 2010 г. из Excel в EViews необходимо воспользоваться алгоритмом действий № 2 «Импорт данных и создание рабочего файла в EViews». При этом столбец с соответствующими данными по курсу доллара мы обозначили как USDollar.
Шаг 2. Выбор опций в EViews для решения уравнения регрессииПосле импорта данных в Excel выбираем в командной строке EViews опции OBJECT/NEW OBJECT, а затем в появившемся окне (NEW OBJECT (НОВЫЙ ОБЪЕКТ) выбираем опцию EQUATION (УРАВНЕНИЕ) — рис. 3.3).
Далее в EViews появляется новое окно — EQUATION ESTIMATION (ОЦЕНКА УРАВНЕНИЯ), которое мы должны заполнить, как показано на рис. 3.4.
Следует иметь в виду, что в опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) в мини-окне METHOD (МЕТОД РЕШЕНИЯ) по умолчанию появляется опция LS — LEAST SQUARES (NIC AND ARMA), название которой переводится как МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (НЕЛИНЕЙНЫЙ МНК И ARM А). Поскольку это уравнение авторегрессии мы решаем с помощью метода наименьших квадратов, то эту опцию мы оставляем. Хотя при необходимости в EViews можно использовать несколько других методов решения уравнений, на которых мы сейчас не будем останавливаться.
Шаг 3. Выбор параметров оцениваемой статистической моделиВ опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) есть еще одно мини-окно — SAMPLE (ВЫБОРКА), в котором по умолчанию указывается либо общее количество наблюдений, либо период наблюдения. В данном случае в мини-окне SAMPLE появилась надпись: 1992М06 2010М05, что означает, что наша выборка содержит ежемесячные данные за период с июня 1992 г. по май 2010 г.
Особенно внимательным следует быть при заполнении миниокна EQUATION SPECIFICATION (СПЕЦИФИКАЦИЯ УРАВНЕНИЯ), в котором нужно написать латиницей название зависимой переменной (ее в списке всегда пишут первой слева) и независимых переменных, а также — в случае необходимости — константу (свободный член уравнения), обозначаемую латинской буквой с.
В нашем случае мини-окно EQUATION SPECIFICATION заполняется следующим образом:
USDollar USDollar(-l) USDollar(-2) с, (3.14)
где USDollar — зависимая переменная, курс доллара США;
USDollar(-1) — независимая переменная, курс доллара США с лагом в один месяц;
USDollar(-2) — независимая переменная, курс доллара США с лагом в два месяца;
с — свободный член (константа).
Мини-окно EQUATION SPECIFICATION легко заполнить, если воспользоваться уравнением авторегрессии (3.13). При этом нужно сделать следующее: во-первых, убрать буквенные обозначения коэффициентов регрессии, но оставить константу с; во-вторых, вместо Yt поставить соответствующее название зависимой переменной — USDollar, а для факторных (независимых) переменных Yt-1 и Yt_2 в скобках еще и добавить соответствующую цифру лага со знаком минус.
Если вспомнить, что формула (3.14) фактически означает уравнение авторегрессии 2-го порядка со свободным членом, то миниокно EQUATION SPECIFICATION можно заполнить другой, более краткой, но вполне равнозначной формулой:
USDollar AR(1) AR(2) с, (3.15)
где USDollar — зависимая переменная;
AR(1) — авторегрессия 1-го порядка, или USDollar(-l);
AR(2) — авторегрессия 2-го порядка, или USDollar(-2).
Шаг 4. Вывод в EViews параметров уравнения авторегрессииИтак, все опции, необходимые для решения уравнения авторегрессии, установлены. Далее щелкаем кнопку ОК в окне EQUATION ESTIMATION. В результате чего получаем данные с параметрами уравнения авторегрессии, которые мы поместили в табл. 3.3. При этом не стоит удивляться тому, что после соответствующей корректировки количество наблюдений у нас сократилось с 215 до 213. Это обусловлено тем, что при создании факторных переменных с лагом в один и в два месяца мы потеряли два наблюдения. В результате теперь наша скорректированная выборка охватывает период не с июня 1992 г., а с августа 1992 г. по апрель 2010 г.
Чтобы нашему читателю было легче понять содержащиеся в табл. 3.3 англоязычные термины, они даются вместе с параллельным переводом в скобках. Если сравнить табл. 3.3 с выводом итогов, полученным после решения этого же уравнения авторегрессии в Excel (см. табл. 3.2), то можно прийти к выводу о тождественности большей части информации, имеющейся в обеих таблицах. Следует также заметить, что как в программе Excel, так и в EViews мы смогли получить коэффициенты уравнения регрессии с одинаковым уровнем точности.
3.6. Интерпретация параметров уравнения авторегрессии в EViews
Какой статистический смысл имеют те или иные параметры уравнения регрессии при выводе итогов в Excel, уже говорилось в главе 1 книги. Однако при выводе итогов в EViews мы получаем новую информацию о других важных параметрах уравнения регрессии, которых нет при выводе итогов в Excel. Чтобы обратить внимание читателя на эти дополнительные параметры, мы выделили их жирным шрифтом в табл. 3.3. Познакомимся со статистическим смыслом этих еще не изученных нами дополнительных параметров уравнения регрессии.
1. В таблице 3.3 среди пока неизвестных нам параметров уравнения регрессии можно назвать такой важный показатель, как LOG LIKELIHOOD (ЛОГАРИФМ МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ), который используется в качестве критерия для отбора наиболее адекватных уравнений регрессии. Чем выше логарифм максимального правдоподобия, тем более адекватным считается уравнение регрессии. При этом логарифм максимального правдоподобия находится по следующей формуле:
где Т — количество наблюдений;
е — отклонение (остатки) прогноза от фактического курса доллара;
π — число пи, равное 3,141593…
В нашем случае логарифм максимального правдоподобия имеет следующее значение:
2. Следующим еще не изученным нами параметром уравнения регрессии является DURBIN-WATSON STAT (КРИТЕРИЙ ДАРЬИНА — УОТСОНА), который является тестом на наличие автокорреляции в остатках. Как мы уже говорили, при наличии автокорреляции в остатках оценки коэффициентов уравнения регрессии нельзя назвать состоятельными и эффективными. При этом критерий Дарбина — Уотсона находится следующим образом:
где п — количество наблюдений;
еt — отклонение (остатки) прогноза от фактического курса доллара;
еt−1 — отклонение (остатки) прогноза от фактического курса доллара с лагом в один месяц.
В нашем случае критерий Дарбина — Уотсона имеет следующее значение:
Правда, критерий Дарбина — Уотсона нельзя использовать для тестирования уравнений авторегресии на наличие автокорреляции в остатках, поскольку в этом случае он теряет свою мощность. Это объясняется тем, что применение критерия Дарбина — Уотсона предполагает строгое соблюдение предпосылки о разделении переменных на зависимую (результативную) и независимую (факторную) переменную. В уравнениях авторегрессии, как известно, в правой части уравнения имеются лаговые значения результативной переменной, а следовательно, указанная предпосылка не соблюдается. В этом случае фактическое значение критерия Дарбина — Уотсона приблизительно равно 2 как при наличии, так и при отсутствии автокорреляции в остатках. Тем не менее в обычных уравнениях регрессии этот критерий весьма полезен для тестирования остатков на наличие автокорреляции.
3. Следующий параметр уравнения регрессии, на наш взгляд, не представляет каких-либо трудностей для его понимания — MEAN DEPENDENT VAR (СРЕДНЕЕ ЗНАЧЕНИЕ ЗАВИСИМОЙ ПЕРЕМЕННОЙ). При этом среднее значение зависимой переменной рассчитывается по довольно простой формуле
где п — количество наблюдений;
Yt — зависимая переменная, ежемесячный курс доллара.
В нашем случае среднее значение (вернее сказать, среднее хронологическое, поскольку мы берем период за 213 месяцев) зависимой переменной будет равно
4. Еще один показатель, характеризующий зависимую переменную данного уравнения регрессии — S.D. DEPENDENT VAR (СТАНДАРТНОЕ ОТКЛОНЕНИЕ ЗАВИСИМОЙ ПЕРЕМЕННОЙ). При этом стандартное отклонение зависимой переменной находится следующим образом:
В нашем случае стандартное отклонение зависимой переменной вычисляется достаточно легко:
5. Важными параметрами уравнения регрессии являются два информационных критерия — AKAIKE INFO CRITERION (ИНФОРМАЦИОННЫЙ КРИТЕРИЙ АКАИКА) и SCHWARZ CRITERION (КРИТЕРИЙ ШВАРЦА). Оба этих информационных критерия можно использовать в качестве критериев для определения в уравнении регрессии оптимальной длины лага. При этом они основаны на принципе снижения остаточной суммы квадратов при добавлении значимого фактора. Так, информационный критерий Акаика находится по следующей формуле:
В нашем случае стандартное отклонение зависимой переменной вычисляется достаточно легко:
5. Важными параметрами уравнения регрессии являются два информационных критерия — AKAIKE INFO CRITERION (ИНФОРМАЦИОННЫЙ КРИТЕРИЙ АКАИКА) и SCHWARZ CRITERION (КРИТЕРИЙ ШВАРЦА). Оба этих информационных критерия можно использовать в качестве критериев для определения в уравнении регрессии оптимальной длины лага. При этом они основаны на принципе снижения остаточной суммы квадратов при добавлении значимого фактора. Так, информационный критерий Акаика находится по следующей формуле:
AIC = -2LL: T + 2k: T, (3/20)
где LL — логарифм максимального правдоподобия;
T — количество наблюдений;
k — общее количество лагов в уравнении авторегрессии.
В нашем случае информационный критерий Акаика равен
AIC = -2×256,1815: 213 × 2 × 3: 213 =2,4336.
В свою очередь информационный критерий Шварца рассчитывается по формуле
SC = -2LL: T + (klnT):T. (3.21)
Относительно нашего уравнения регрессии информационный критерий Шварца имеет следующее значение:
SC = -2 × 256,1815: 213 + (3ln213):213 =2,4809.
Обычно оцениваемая статистическая модель лучше соответствует фактическим данным при более высоком порядке р и q в модели ARMA(/? q). Платой за это кажущееся повышение точности является вполне очевидная потеря в простоте статистической модели и в экономии включенных в него параметров, поэтому для достижения компромисса между точностью уравнения регрессии и экономией его параметров пользуются информационными критериями Акаика и Шварца.
При выборе из двух уравнений регрессии обычно предпочтение отдается той статистической модели, у которой меньше значения этих информационных критериев. Следует также заметить, что информационный критерий Шварца по сравнению с критерием Акаика позволяет отбирать уравнения регрессии с более экономичными параметрами.
Как мы уже говорили, в уравнениях авторегрессии при тестировании остатков на наличие автокорреляции критерий Дарбина — Уотсона теряет свою мощность, и в этих случаях приходится пользоваться иными критериями. Например, тем, кто работает в Excel, с этой целью проще воспользоваться критерием h Дарбина, или, как его еще называют, h-статистикой Дарбина. Его расчет выполняется по следующей формуле:
где D — критерий Дарбина — Уотсона;
п — количество наблюдений;
V — квадрат стандартной ошибки при лаговой факторной переменной Yt_1.
Например, в нашем случае критерий h Дарбина имеет следующую величину:
При увеличении объема выборки распределение h-статистики стремится к нормальному с нулевым математическим ожиданием и дисперсией, равной 1. Поэтому гипотеза об отсутствии автокорреляции в остатках отвергается, если фактическое значение h-статистики оказывается больше, чем критическое значение нормального распределения. Для проверки по критерию h Дарбина гипотезы о наличии автокорреляции в остатках проще воспользоваться следующим правилом.
1. Если h > 1,96, то нулевая гипотеза об отсутствии положительной автокорреляции в остатках отклоняется.
2. Если h < -1,96, то нулевая гипотеза об отсутствии отрицательной автокорреляции в остатках отклоняется.
3. Если -1,96 < h < 1,96, то нет основания отклонять нулевую гипотезу об отсутствии автокорреляции в остатках.
Поскольку критерий h Дарбина получился равным-1,00368, то у нас нет основания отклонять нулевую гипотезу об отсутствии автокорреляции в остатках.
Следует иметь в виду, что в использовании критерия h Дарбина есть определенная специфика. Во-первых, этот критерий нельзя применять, если произведение nV ≥ 1. Во-вторых, h-статистику Дарбина можно использовать лишь для больших выборок (п ≥ 30 наблюдений). В-третьих, критерий h Дарбина зависит только от V (квадрата стандартной ошибки) при лаговой факторной переменной Yt_1 и не зависит от числа лагов, используемых в уравнении авторегрессии.
В EViews для проверки статистических моделей на наличие автоко-релляции в остатках целесообразно использовать LM-тест Бройша — Годфри (Breusch — Godfrey Serial Correlation LM Test), который в отличие от h-статистики Дарбина может быть применим не только для авторегрессии 1-го порядка, но и для авторегрессии более высоких порядков.
Суть этого теста заключается в построении уравнения регрессии остатков с заранее заданной величиной лага, решение которого позволяет сделать вывод о наличии или отсутствии автокорреляции в остатках:
где е — остатки;
т — заданная величина лага;
u — некоррелируемые остатки, т. е. «белый шум».
При этом выдвигается нулевая гипотеза, что ρ1 = ρ2 = ρm = 0, т. е. автокорреляция в остатках с различным лагом отсутствует. Вполне естественно, что альтернативной гипотезой в этом случае является гипотеза ρ1 ≠ mρ2 ≠ mρm ≠ 0. По итогам решения уравнения регрессии 3.23 нулевая гипотеза либо принимается, либо отклоняется.
Поскольку LM-тест Бройша — Годфри проверяет остатки на автокорреляцию, то мы его проводим уже после того, как решили основное уравнение авторегрессии, а следовательно, нашли остатки, полученные на основе этой статистической модели.
Алгоритм действий № 7 Как выполняется LM-тест Бройша — Годфри в EViews Шаг 1. Практическая реализация LM-теста Бройша — ГодфриВ EViews реализация LM-теста Бройша — Годфри довольно проста. С этой целью необходимо в командной строке (1 Command) или в строке уравнение (3 EQUATION) выбрать следующие опции: View/ Residual Tests/Serial Correlation LM Test… После чего появляется миниокно LAG SPECIFICATION, в котором можно задать интересующую нас величину лага (рис. 3.5). В этом случае мы задаем величину лага, равную 2, что обусловлено структурой лаговых переменных, включенных в уравнение авторегрессии (см. формулу (3.14)). В общем виде величина задаваемого лага для модели ARMA (р, q) = maх(р, q), которая в нашем случае приобретает вид: ARMA (2, 0) = max(2, 0) = 2.
Шаг 2. Интерпретация результатов тестированияВ результате мы получаем следующие данные по результатам проведения LM-теста Бройша — Годфри, которые заносим в табл. 3.4. EViews сообщает две тестовые статистики (см. две верхние строки в табл. 3.4, выделенные жирным шрифтом). При этом для оценки результатов тестирования в качестве основного используется критерий Obs × R-squared (Наблюдения × R2), который мы не только выделили жирным шрифтом, но и подчеркнули. Для нашего случая Obs × R-squared = 0,024005 × 213 = 5,112998. Правда, если мы попробуем сами провести это вычисление, то из-за округления R2 у нас получится некоторое расхождение с цифрой, выданной EViews. При этом предполагается, что LM-тестовая статистика (критерий Obs × R-squared) асимптотически распределена как χ2 (хи-квадрат-распределение), о котором мы уже говорили выше. Поэтому значимость Obs × R-squared определяется с помощью табличного:
В том случае, когда значимость (Probability) Obs × R-squaredу нас оказывается меньше 0,05, нулевая гипотеза об отсутствии автокорреляции в остатках отклоняется. Если же Obs × R-squared больше 0,05, нулевую гипотезу об отсутствии автокорреляции в остатках нельзя отклонить. Поскольку в нашем случае значимость Obs × R-squared = 0,077576, то, следовательно, нулевая гипотеза не отклоняется и можно сделать вывод об отсутствии автокорреляции в остатках.
В EViews приводится в качестве дополнительного F-критерий (F-statistic), который представляет собой тест на определение совокупной значимости всех лаговых остатков. В нашем случае F-критерий также подтверждает отсутствие автокорреляции в остатках.
Как мы уже убедились ранее, при построении уравнения авторегрессии у нас происходит уменьшение временного ряда данных, что ведет к пропуску в том числе и части лаговых остатков. Согласно предложению, выдвинутому в 1993 г. Давидсоном и Маккинном, в этом случае отсутствующие остатки следует приравнивать к нулю. По их мнению, это дает лучшую статистику, чем в случае пропуска этих остатков. Однако, по мнению большинства исследователей, в этом случае распределение F-статистики становится не совсем точным. Тем не менее EViews дает F-критерий для справочных целей.