Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews - Владимир Брюков 6 стр.


Для импорта ежемесячных данных по курсу доллара (на конец месяца) за период с июня 1992 г. по апрель 2010 г. из Excel в EViews необходимо воспользоваться алгоритмом действий № 2 «Импорт данных и создание рабочего файла в EViews». При этом столбец с соответствующими данными по курсу доллара мы обозначили как USDollar.

Шаг 2. Выбор опций в EViews для решения уравнения регрессии

После импорта данных в Excel выбираем в командной строке EViews опции OBJECT/NEW OBJECT, а затем в появившемся окне (NEW OBJECT (НОВЫЙ ОБЪЕКТ) выбираем опцию EQUATION (УРАВНЕНИЕ) — рис. 3.3).

Далее в EViews появляется новое окно — EQUATION ESTIMATION (ОЦЕНКА УРАВНЕНИЯ), которое мы должны заполнить, как показано на рис. 3.4.

Следует иметь в виду, что в опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) в мини-окне METHOD (МЕТОД РЕШЕНИЯ) по умолчанию появляется опция LS — LEAST SQUARES (NIC AND ARMA), название которой переводится как МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (НЕЛИНЕЙНЫЙ МНК И ARM А). Поскольку это уравнение авторегрессии мы решаем с помощью метода наименьших квадратов, то эту опцию мы оставляем. Хотя при необходимости в EViews можно использовать несколько других методов решения уравнений, на которых мы сейчас не будем останавливаться.

Шаг 3. Выбор параметров оцениваемой статистической модели

В опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) есть еще одно мини-окно — SAMPLE (ВЫБОРКА), в котором по умолчанию указывается либо общее количество наблюдений, либо период наблюдения. В данном случае в мини-окне SAMPLE появилась надпись: 1992М06 2010М05, что означает, что наша выборка содержит ежемесячные данные за период с июня 1992 г. по май 2010 г.

Особенно внимательным следует быть при заполнении миниокна EQUATION SPECIFICATION (СПЕЦИФИКАЦИЯ УРАВНЕНИЯ), в котором нужно написать латиницей название зависимой переменной (ее в списке всегда пишут первой слева) и независимых переменных, а также — в случае необходимости — константу (свободный член уравнения), обозначаемую латинской буквой с.

В нашем случае мини-окно EQUATION SPECIFICATION заполняется следующим образом:

USDollar USDollar(-l) USDollar(-2) с, (3.14)

где USDollar — зависимая переменная, курс доллара США;

USDollar(-1) — независимая переменная, курс доллара США с лагом в один месяц;

USDollar(-2) — независимая переменная, курс доллара США с лагом в два месяца;

с — свободный член (константа).

Мини-окно EQUATION SPECIFICATION легко заполнить, если воспользоваться уравнением авторегрессии (3.13). При этом нужно сделать следующее: во-первых, убрать буквенные обозначения коэффициентов регрессии, но оставить константу с; во-вторых, вместо Yt поставить соответствующее название зависимой переменной — USDollar, а для факторных (независимых) переменных Yt-1 и Yt_2 в скобках еще и добавить соответствующую цифру лага со знаком минус.

Если вспомнить, что формула (3.14) фактически означает уравнение авторегрессии 2-го порядка со свободным членом, то миниокно EQUATION SPECIFICATION можно заполнить другой, более краткой, но вполне равнозначной формулой:

USDollar AR(1) AR(2) с, (3.15)

где USDollar — зависимая переменная;

AR(1) — авторегрессия 1-го порядка, или USDollar(-l);

AR(2) — авторегрессия 2-го порядка, или USDollar(-2).

Шаг 4. Вывод в EViews параметров уравнения авторегрессии

Итак, все опции, необходимые для решения уравнения авторегрессии, установлены. Далее щелкаем кнопку ОК в окне EQUATION ESTIMATION. В результате чего получаем данные с параметрами уравнения авторегрессии, которые мы поместили в табл. 3.3. При этом не стоит удивляться тому, что после соответствующей корректировки количество наблюдений у нас сократилось с 215 до 213. Это обусловлено тем, что при создании факторных переменных с лагом в один и в два месяца мы потеряли два наблюдения. В результате теперь наша скорректированная выборка охватывает период не с июня 1992 г., а с августа 1992 г. по апрель 2010 г.

Чтобы нашему читателю было легче понять содержащиеся в табл. 3.3 англоязычные термины, они даются вместе с параллельным переводом в скобках. Если сравнить табл. 3.3 с выводом итогов, полученным после решения этого же уравнения авторегрессии в Excel (см. табл. 3.2), то можно прийти к выводу о тождественности большей части информации, имеющейся в обеих таблицах. Следует также заметить, что как в программе Excel, так и в EViews мы смогли получить коэффициенты уравнения регрессии с одинаковым уровнем точности.

3.6. Интерпретация параметров уравнения авторегрессии в EViews

Какой статистический смысл имеют те или иные параметры уравнения регрессии при выводе итогов в Excel, уже говорилось в главе 1 книги. Однако при выводе итогов в EViews мы получаем новую информацию о других важных параметрах уравнения регрессии, которых нет при выводе итогов в Excel. Чтобы обратить внимание читателя на эти дополнительные параметры, мы выделили их жирным шрифтом в табл. 3.3. Познакомимся со статистическим смыслом этих еще не изученных нами дополнительных параметров уравнения регрессии.

1. В таблице 3.3 среди пока неизвестных нам параметров уравнения регрессии можно назвать такой важный показатель, как LOG LIKELIHOOD (ЛОГАРИФМ МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ), который используется в качестве критерия для отбора наиболее адекватных уравнений регрессии. Чем выше логарифм максимального правдоподобия, тем более адекватным считается уравнение регрессии. При этом логарифм максимального правдоподобия находится по следующей формуле:

где Т — количество наблюдений;


е — отклонение (остатки) прогноза от фактического курса доллара;

π — число пи, равное 3,141593…

В нашем случае логарифм максимального правдоподобия имеет следующее значение:

2. Следующим еще не изученным нами параметром уравнения регрессии является DURBIN-WATSON STAT (КРИТЕРИЙ ДАРЬИНА — УОТСОНА), который является тестом на наличие автокорреляции в остатках. Как мы уже говорили, при наличии автокорреляции в остатках оценки коэффициентов уравнения регрессии нельзя назвать состоятельными и эффективными. При этом критерий Дарбина — Уотсона находится следующим образом:

где п — количество наблюдений;

еt — отклонение (остатки) прогноза от фактического курса доллара;


еt−1 — отклонение (остатки) прогноза от фактического курса доллара с лагом в один месяц.

В нашем случае критерий Дарбина — Уотсона имеет следующее значение:

Правда, критерий Дарбина — Уотсона нельзя использовать для тестирования уравнений авторегресии на наличие автокорреляции в остатках, поскольку в этом случае он теряет свою мощность. Это объясняется тем, что применение критерия Дарбина — Уотсона предполагает строгое соблюдение предпосылки о разделении переменных на зависимую (результативную) и независимую (факторную) переменную. В уравнениях авторегрессии, как известно, в правой части уравнения имеются лаговые значения результативной переменной, а следовательно, указанная предпосылка не соблюдается. В этом случае фактическое значение критерия Дарбина — Уотсона приблизительно равно 2 как при наличии, так и при отсутствии автокорреляции в остатках. Тем не менее в обычных уравнениях регрессии этот критерий весьма полезен для тестирования остатков на наличие автокорреляции.

3. Следующий параметр уравнения регрессии, на наш взгляд, не представляет каких-либо трудностей для его понимания — MEAN DEPENDENT VAR (СРЕДНЕЕ ЗНАЧЕНИЕ ЗАВИСИМОЙ ПЕРЕМЕННОЙ). При этом среднее значение зависимой переменной рассчитывается по довольно простой формуле

где п — количество наблюдений;

Yt — зависимая переменная, ежемесячный курс доллара.

В нашем случае среднее значение (вернее сказать, среднее хронологическое, поскольку мы берем период за 213 месяцев) зависимой переменной будет равно

4. Еще один показатель, характеризующий зависимую переменную данного уравнения регрессии — S.D. DEPENDENT VAR (СТАНДАРТНОЕ ОТКЛОНЕНИЕ ЗАВИСИМОЙ ПЕРЕМЕННОЙ). При этом стандартное отклонение зависимой переменной находится следующим образом:

В нашем случае стандартное отклонение зависимой переменной вычисляется достаточно легко:

5. Важными параметрами уравнения регрессии являются два информационных критерия — AKAIKE INFO CRITERION (ИНФОРМАЦИОННЫЙ КРИТЕРИЙ АКАИКА) и SCHWARZ CRITERION (КРИТЕРИЙ ШВАРЦА). Оба этих информационных критерия можно использовать в качестве критериев для определения в уравнении регрессии оптимальной длины лага. При этом они основаны на принципе снижения остаточной суммы квадратов при добавлении значимого фактора. Так, информационный критерий Акаика находится по следующей формуле:

В нашем случае стандартное отклонение зависимой переменной вычисляется достаточно легко:

5. Важными параметрами уравнения регрессии являются два информационных критерия — AKAIKE INFO CRITERION (ИНФОРМАЦИОННЫЙ КРИТЕРИЙ АКАИКА) и SCHWARZ CRITERION (КРИТЕРИЙ ШВАРЦА). Оба этих информационных критерия можно использовать в качестве критериев для определения в уравнении регрессии оптимальной длины лага. При этом они основаны на принципе снижения остаточной суммы квадратов при добавлении значимого фактора. Так, информационный критерий Акаика находится по следующей формуле:

AIC = -2LL: T + 2k: T, (3/20)

где LL — логарифм максимального правдоподобия;

T — количество наблюдений;

k — общее количество лагов в уравнении авторегрессии.

В нашем случае информационный критерий Акаика равен

AIC = -2×256,1815: 213 × 2 × 3: 213 =2,4336.

В свою очередь информационный критерий Шварца рассчитывается по формуле

SC = -2LL: T + (klnT):T. (3.21)

Относительно нашего уравнения регрессии информационный критерий Шварца имеет следующее значение:

SC = -2 × 256,1815: 213 + (3ln213):213 =2,4809.

Обычно оцениваемая статистическая модель лучше соответствует фактическим данным при более высоком порядке р и q в модели ARMA(/? q). Платой за это кажущееся повышение точности является вполне очевидная потеря в простоте статистической модели и в экономии включенных в него параметров, поэтому для достижения компромисса между точностью уравнения регрессии и экономией его параметров пользуются информационными критериями Акаика и Шварца.

При выборе из двух уравнений регрессии обычно предпочтение отдается той статистической модели, у которой меньше значения этих информационных критериев. Следует также заметить, что информационный критерий Шварца по сравнению с критерием Акаика позволяет отбирать уравнения регрессии с более экономичными параметрами.

Как мы уже говорили, в уравнениях авторегрессии при тестировании остатков на наличие автокорреляции критерий Дарбина — Уотсона теряет свою мощность, и в этих случаях приходится пользоваться иными критериями. Например, тем, кто работает в Excel, с этой целью проще воспользоваться критерием h Дарбина, или, как его еще называют, h-статистикой Дарбина. Его расчет выполняется по следующей формуле:

где D — критерий Дарбина — Уотсона;

п — количество наблюдений;

V — квадрат стандартной ошибки при лаговой факторной переменной Yt_1.

Например, в нашем случае критерий h Дарбина имеет следующую величину:

При увеличении объема выборки распределение h-статистики стремится к нормальному с нулевым математическим ожиданием и дисперсией, равной 1. Поэтому гипотеза об отсутствии автокорреляции в остатках отвергается, если фактическое значение h-статистики оказывается больше, чем критическое значение нормального распределения. Для проверки по критерию h Дарбина гипотезы о наличии автокорреляции в остатках проще воспользоваться следующим правилом.

1. Если h > 1,96, то нулевая гипотеза об отсутствии положительной автокорреляции в остатках отклоняется.

2. Если h < -1,96, то нулевая гипотеза об отсутствии отрицательной автокорреляции в остатках отклоняется.

3. Если -1,96 < h < 1,96, то нет основания отклонять нулевую гипотезу об отсутствии автокорреляции в остатках.

Поскольку критерий h Дарбина получился равным-1,00368, то у нас нет основания отклонять нулевую гипотезу об отсутствии автокорреляции в остатках.

Следует иметь в виду, что в использовании критерия h Дарбина есть определенная специфика. Во-первых, этот критерий нельзя применять, если произведение nV ≥ 1. Во-вторых, h-статистику Дарбина можно использовать лишь для больших выборок (п ≥ 30 наблюдений). В-третьих, критерий h Дарбина зависит только от V (квадрата стандартной ошибки) при лаговой факторной переменной Yt_1 и не зависит от числа лагов, используемых в уравнении авторегрессии.

В EViews для проверки статистических моделей на наличие автоко-релляции в остатках целесообразно использовать LM-тест Бройша — Годфри (Breusch — Godfrey Serial Correlation LM Test), который в отличие от h-статистики Дарбина может быть применим не только для авторегрессии 1-го порядка, но и для авторегрессии более высоких порядков.

Суть этого теста заключается в построении уравнения регрессии остатков с заранее заданной величиной лага, решение которого позволяет сделать вывод о наличии или отсутствии автокорреляции в остатках:

где е — остатки;

т — заданная величина лага;

u — некоррелируемые остатки, т. е. «белый шум».

При этом выдвигается нулевая гипотеза, что ρ1 = ρ2 = ρm = 0, т. е. автокорреляция в остатках с различным лагом отсутствует. Вполне естественно, что альтернативной гипотезой в этом случае является гипотеза ρ1 ≠ mρ2 ≠ mρm ≠ 0. По итогам решения уравнения регрессии 3.23 нулевая гипотеза либо принимается, либо отклоняется.

Поскольку LM-тест Бройша — Годфри проверяет остатки на автокорреляцию, то мы его проводим уже после того, как решили основное уравнение авторегрессии, а следовательно, нашли остатки, полученные на основе этой статистической модели.

Алгоритм действий № 7 Как выполняется LM-тест Бройша — Годфри в EViews Шаг 1. Практическая реализация LM-теста Бройша — Годфри

В EViews реализация LM-теста Бройша — Годфри довольно проста. С этой целью необходимо в командной строке (1 Command) или в строке уравнение (3 EQUATION) выбрать следующие опции: View/ Residual Tests/Serial Correlation LM Test… После чего появляется миниокно LAG SPECIFICATION, в котором можно задать интересующую нас величину лага (рис. 3.5). В этом случае мы задаем величину лага, равную 2, что обусловлено структурой лаговых переменных, включенных в уравнение авторегрессии (см. формулу (3.14)). В общем виде величина задаваемого лага для модели ARMA (р, q) = maх(р, q), которая в нашем случае приобретает вид: ARMA (2, 0) = max(2, 0) = 2.

Шаг 2. Интерпретация результатов тестирования

В результате мы получаем следующие данные по результатам проведения LM-теста Бройша — Годфри, которые заносим в табл. 3.4. EViews сообщает две тестовые статистики (см. две верхние строки в табл. 3.4, выделенные жирным шрифтом). При этом для оценки результатов тестирования в качестве основного используется критерий Obs × R-squared (Наблюдения × R2), который мы не только выделили жирным шрифтом, но и подчеркнули. Для нашего случая Obs × R-squared = 0,024005 × 213 = 5,112998. Правда, если мы попробуем сами провести это вычисление, то из-за округления R2 у нас получится некоторое расхождение с цифрой, выданной EViews. При этом предполагается, что LM-тестовая статистика (критерий Obs × R-squared) асимптотически распределена как χ2 (хи-квадрат-распределение), о котором мы уже говорили выше. Поэтому значимость Obs × R-squared определяется с помощью табличного:

В том случае, когда значимость (Probability) Obs × R-squaredу нас оказывается меньше 0,05, нулевая гипотеза об отсутствии автокорреляции в остатках отклоняется. Если же Obs × R-squared больше 0,05, нулевую гипотезу об отсутствии автокорреляции в остатках нельзя отклонить. Поскольку в нашем случае значимость Obs × R-squared = 0,077576, то, следовательно, нулевая гипотеза не отклоняется и можно сделать вывод об отсутствии автокорреляции в остатках.

В EViews приводится в качестве дополнительного F-критерий (F-statistic), который представляет собой тест на определение совокупной значимости всех лаговых остатков. В нашем случае F-критерий также подтверждает отсутствие автокорреляции в остатках.

Как мы уже убедились ранее, при построении уравнения авторегрессии у нас происходит уменьшение временного ряда данных, что ведет к пропуску в том числе и части лаговых остатков. Согласно предложению, выдвинутому в 1993 г. Давидсоном и Маккинном, в этом случае отсутствующие остатки следует приравнивать к нулю. По их мнению, это дает лучшую статистику, чем в случае пропуска этих остатков. Однако, по мнению большинства исследователей, в этом случае распределение F-статистики становится не совсем точным. Тем не менее EViews дает F-критерий для справочных целей.

Назад Дальше