Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews - Владимир Брюков 8 стр.


4.2. Оценка точности прогностической модели, проверка остатков на автокорреляцию и стационарность

Далее проверим уравнение AR(2) без константы на наличие автокорреляции в остатках с помощью LM-теста Бройша — Годфри, используя при этом алгоритм действий № 7. При этом в мини-окне LAG SPECIFICATION зададим величину лага, равную 2, поскольку мы тестируем уравнение авторегрессии 2-го порядка. Полученные результаты занесем в табл. 4.2. Поскольку значимость (Probability) главного критерия этого теста «Наблюдения × R2»(Obs × R-squared) равна 0,1069, то, следовательно, нулевая гипотеза об отсутствии автокорреляции в остатках не может быть отклонена с 95 %-ным уровнем надежности (а точнее сказать, с 89,31 %-ным уровнем надежности). Если сравнить последнюю цифру с аналогичными данными табл. 3.4, то об отсутствии автокорреляции в остатках в последнем случае можно говорить с большей уверенностью.

Таким образом, сравнение параметров, с одной стороны, уравнения AR(2) с константой (см. табл. 3.3), а с другой стороны, уравнения AR(2) без константы (см. табл. 4.1) не помогло нам сделать окончательный вывод в пользу одного из них. Аналогичный результат у нас получился и по итогам проведения LM-теста Бройша — Годфри на наличие автокорреляции в остатках. Поэтому мы решили оценить точность прогнозов, сделанных с помощью уравнения авторегрессии без константы, воспользовавшись алгоритмом действий № 8 «Как оценить точность статистической модели в EViews». В результате получилась табл. 4.3.

Если сравнить табл. 4.3 с табл. 3.6, то можно легко прийти к выводу, что шесть из восьми параметров, характеризующих точность прогнозов, свидетельствуют в пользу уравнения авторегрессии с константой. Правда, при этом разница между ними была весьма незначительной. Однако вполне естественно, что при прогнозировании курсов валют нас в первую очередь интересует точность предсказаний, которую можно получить с помощью той или иной статистической модели. И с этой точки зрения уравнение авторегрессии 2-го порядка без константы оказалось точнее. Так, средняя ошибка прогноза по модулю у последней модели оказалась (после округления) равна 33,50 коп., а средняя ошибка по модулю (%) — 2,78 %, т. е. соответственно на 2,5 коп. и на 2,02 процентного пункта ниже, чем у уравнения авторегрессии с константой. Именно это обстоятельство и побудило нас сделать выбор в пользу уравнения авторегрессии без константы.

Чтобы сделать адекватный прогноз по курсу доллара, необходимо учесть как тренд, так и случайную компоненту, поскольку оба этих фактора существенно влияют на динамику валюты. Судя по табл. 4.3, нам удалось построить уравнение авторегрессии, с достаточно высокой степенью точности учитывающее тренд. Используя эту статистическую модель, можно делать точечные прогнозы, которые, правда, очень редко совпадают с фактическим курсом доллара. Объясняется это тем, что в ежемесячных колебаниях курса доллара достаточно большую роль играет не только тренд, но и случайная компонента. Судя по тому, что средняя ошибка по модулю равна 2,78 %, вполне очевидно, что эту цифру можно считать своего рода среднестатистическим индикатором вклада случайной компоненты в динамику курса доллара.

Поскольку точечный прогноз по определению не в состоянии указать нам диапазон вероятного отклонения фактического курса доллара от его предсказываемого значения, то с этой целью приходится использовать так называемый интервальный прогноз. Суть интервального прогнозирования заключается в определении интервала значений, в который прогнозируемое значение попадет с определенной долей вероятности. Чем выше интервал прогноза (разница между максимальным и минимальным значениями прогноза), тем больше вероятность (ее еще называют уровнем надежности) его реализации.

Однако прежде чем перейти к составлению интервальных прогнозов, нам необходимо, во-первых, проверить полученные остатки на стационарность, во-вторых, посмотреть, является ли распределение остатков нормальным.

В EViews проверить остатки на стационарность достаточно просто, для этого нужно только точно следовать алгоритму действий № 9.

Алгоритм действий № 9 Как в EViews проверить остатки на стационарность Шаг 1. Установка необходимых опций

С этой целью нужно выбрать строку 2 WORKFILE (рабочий файл), а затем открыть файл RESID (остатки), который появляется в рабочем файле после того, как мы воспользовались опцией FORECAST (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»).

Далее в файле RESID нам следует воспользоваться опцией UNIT ROOT TEST (тест на единичный корень), в результате чего появится (рис. 4.1) мини-окно UNIT ROOT TEST, в котором нам нужно выбрать следующие опции.

Шаг 2. Заполнение мини-окна UNIT ROOT TEST

Параметр TEST TYPE (тип теста) установим на опции AUGMENTED DICKEY — FULLER (расширенный тест Дикки — Фуллера), поскольку этот тест чаще всего используется на практике, так как он учитывает возможную автокорреляцию в остатках. Параметр TEST FOR UNIT ROOT IN (тест на единичный корень для…) следует установить на опции 1ST DIFFERENCE (первых разностей), так как при исследовании остатков на стационарность не используются их исходные уровни. Параметр INCLUDE IN TEST EQUATION (включить в тестовое уравнение) установим на опции NONE (не включать тренд или тренд и константу), поскольку в остатках отсутствует тренд и свободный член уравнения (константа). Параметр LAG LENGTH (длина лага) установим на опции AUTOMATIC SELECTION (автоматический выбор), что позволит EViews самостоятельно выбрать длину лага. Вполне естественно, что при необходимости длину лага можно задать самому.

Шаг 3. Интерпретация результатов теста

Теория тестирования стационарности временных рядов изложена ниже. А чтобы просто сделать вывод о стационарности временнoго ряда на основе расширенного теста Дикки — Фуллера, нужно знать следующее. После того как ранее мы заполнили мини-окно Unit Root test и щелкнули кнопку ОК, в результате у нас получилась табл. 4.4 с итогами теста. При этом главное внимание нужно обратить на верхнюю строчку теста, выделенную жирным шрифтом: Augmented Dickey — Fuller test statistic (статистика расширенного теста Дикки — Фуллера). Поскольку статистика теста Дикки — Фуллера в этом случае равна 11,05764, а ее значимость (Prob.) равна 0,0000, то нулевая гипотеза о том, что D(RESID) имеет единичный корень, отвергается. Следовательно, мы можем принять альтернативную гипотезу о стационарности полученных остатков.

При этом в табл. 4.4 даются критические значения теста (Test critical values), на основе которых о стационарности остатков можно судить с различным уровнем надежности. Так, в том случае, когда статистика расширенного теста Дикки — Фуллера меньше -2,576127, то вывод о стационарности остатков можно сделать с 99 %-ным уровнем надежности, а если меньше -1,942361, но больше -2,576127, то с 95 %-ным уровнем надежности. Если интересующая нас статистика меньше -1,615684, но больше -1,942361, то уровень надежности вывода о стационарности остатков снижается до 90 %.

В основе теории единичного корня лежит довольно простая формула, которая считается базовой для понимания стационарности в уравнениях авторегрессии:

Yt = ρYt-1 + et, (4.4)

где Yt — результативная зависимая переменная;

Yt-1 — независимая факторная переменная с лагом в один период (в нашем случае в один месяц);

ρ — коэффициент регрессии;

еt — остатки.

Уравнение авторегрессии 1-го порядка считается стационарным в том случае, когда коэффициент регрессии ρ < 1. Соответственно если ρ > 1, то оно считается нестационарным, а следовательно, волатильность с течением времени может нарастать и стремиться к бесконечности. Следует заметить, что при необходимости в формулу (4.4) может быть добавлена константа либо константа и тренд, если, конечно, они будут статистически значимыми.

Проверка авторегрессионного процесса на стационарность проводится следующим образом. Согласно нулевой гипотезе, предполагается, что если ρ = 1, то временной ряд нестационарный, а в случае ее опровержения принимается альтернативная гипотеза, утверждающая, что ρ < 1, а следовательно, ряд стационарный.

В ходе решения обычного уравнения регрессии рассчитывается t-статистика для коэффициента регрессии ρ, совпадающая с расчетными значениями статистики Дикки — Фуллера, которая потом сравнивается с критическими значениями статистики Дикки — Фуллера (обычно даются в таблице, но в EViews, естественно, мы их получим в готовом виде). Сравнение проводится по одностороннему критерию, но если бы альтернативная гипотеза состояла в утверждении, что ρ ≠ 1, то тогда мы пользовались бы двусторонним критерием. Поскольку проверка гипотезы проводится по одностороннему критерию, то в этом случае, если расчетное значение t-статистики для коэффициента регрессии ρ будет меньше критического значения статистики Дикки — Фуллера (с поправкой на число наблюдений), нулевая гипотеза о том, что ρ = 1 отклоняется и принимается альтернативная гипотеза о том, что ρ < 1, а следовательно, временной ряд Yt можно считать стационарным.

Проверка авторегрессионного процесса на стационарность проводится следующим образом. Согласно нулевой гипотезе, предполагается, что если ρ = 1, то временной ряд нестационарный, а в случае ее опровержения принимается альтернативная гипотеза, утверждающая, что ρ < 1, а следовательно, ряд стационарный.

В ходе решения обычного уравнения регрессии рассчитывается t-статистика для коэффициента регрессии ρ, совпадающая с расчетными значениями статистики Дикки — Фуллера, которая потом сравнивается с критическими значениями статистики Дикки — Фуллера (обычно даются в таблице, но в EViews, естественно, мы их получим в готовом виде). Сравнение проводится по одностороннему критерию, но если бы альтернативная гипотеза состояла в утверждении, что ρ ≠ 1, то тогда мы пользовались бы двусторонним критерием. Поскольку проверка гипотезы проводится по одностороннему критерию, то в этом случае, если расчетное значение t-статистики для коэффициента регрессии ρ будет меньше критического значения статистики Дикки — Фуллера (с поправкой на число наблюдений), нулевая гипотеза о том, что ρ = 1 отклоняется и принимается альтернативная гипотеза о том, что ρ < 1, а следовательно, временной ряд Yt можно считать стационарным.

Стандартный тест Дикки — Фуллера проводится после вычитания Yt-1 из левой и правой частей уравнения (4.4). В результате мы получаем следующую формулу:

Yt — Yt-1 = ρYt-1 — Yt-1 + et (4.5)

Учитывая, что dY1 = Yt- Yt-l, а ρYt-1 — Yt-1 = (ρ -1)Yt-1, и приравняв α = (ρ-1), получим новое уравнение:

dY1 = αYt-1 + et (4.6)

С учетом того, что при r = 1 параметр а становится равным нулю, то соответственно в случае принятия нулевой гипотезы α = 0, а если принимается альтернативная гипотеза, то соответственно |α| < 1, а следовательно, временной ряд считается стационарным.

Однако на практике большую популярность приобрел расширенный тест Дикки — Фуллера AUGMENTED DICKEY — FULLER, так как он учитывает возможную автокорреляцию в остатках. При этом в правую часть уравнения (4.6) включаются дополнительные лаговые переменные Y. В результате это уравнение приобретает следующий вид:

В дальнейшем эти знания нам потребуются для проверки авторегрессионного процесса 2-го порядка (см. уравнение (4.1)) на стационарность, а пока применим эту теорию для проверки на стационарность остатков, полученных в результате решения этого уравнения. Заполнив в алгоритме № 9 мини-окно UNIT ROOT TEST и щелкнув кнопку ОК, мы фактически решили следующее уравнение регрессии:

В результате решения расширенного теста Дикки — Фуллера мы получили табл. 4.4 с итогами теста, свидетельствующими о стационарности остатков. О том, как мы пришли к этому выводу, подробно рассказано выше (см. алгоритм действий № 9 «Как проверить в EViews остатки на стационарность модели»).

Поскольку мы доказали, что остатки, полученные по модели авторегрессии 2-го порядка без константы, являются стационарными, то, следовательно, можно сделать вывод, что их распределение носит устойчивый характер.

4.3. Описательная статистика и тестирование остатков на нормальное распределение

Теперь нашей задачей является ответить на следующий важный вопрос: является ли распределение полученных остатков нормальным? При составлении интервальных прогнозов мы исходим из предположения, что распределение остатков носит нормальный характер, поэтому теперь должны проверить, насколько это утверждение соответствует истине.

Алгоритм действий № 10 Как в EViews получить описательную статистику остатков Шаг 1. Установка необходимых опций

Чтобы узнать характер распределения остатков, необходимо в рабочем файле открыть файл RESID, а затем выбрать опции VIEW (CMOTpeTb)ZDESCRIPTIVE STATISTICS (описательная статистика)/ STATS TABLE (таблица со статистикой). В результате мы получили табл. 4.5 с описательной статистикой для остатков.

Шаг 2. Интерпретация результатов теста

Во-первых, если Probability (значимость) больше 0,05, то гипотеза о нормальном распределении остатков подтверждается. Поскольку в нашем случае Probability = 0, то гипотеза о нормальном распределении остатков отклоняется. Во-вторых, если коэффициент асимметрии (Skewness) больше нуля, то в остатках наблюдается правосторонняя асимметрия, а если меньше нуля — левосторонняя асимметрия. Судя по табл. 4.5, в этом случае в распределении остатков наблюдается правосторонняя асимметрия. Если коэффициент эксцесса (Kurtosis) больше 3, то наблюдается островершинное распределение, а если меньше — плосковершинное распределение статистического ряда. В этом случае мы наблюдаем «островершинное» распределение остатков. С более подробной интерпретацией описательной статистики можно познакомиться ниже.

Дадим некоторые пояснения к табл. 4.5. Так, среднее (Mean) равно сумме всех остатков, деленной на количество наблюдений. В свою очередь медиана (Median) представляет собой величину, расположенную в середине нечетного ряда, ранжированного в порядке возрастания или убывания. В четном ряде медиана равна среднему значению двух соседних величин, расположенных в середине ряда. Соответственно максимум (Maximum) и минимум (Minimum) означают максимальное и минимальное значения временного ряда.

Стандартное отклонение является мерой дисперсии для временного ряда и находится по формуле для стандартного отклонения по выборке:

В нашем случае стандартное отклонение имеет следующее значение:

Коэффициент асимметрии является своего рода индикатором, показывающим степень асимметричности распределения статистического ряда. Следует иметь в виду, что в случае полной симметрии, в том числе и при нормальном распределении, коэффициент асимметрии должен быть равен нулю. Если коэффициент асимметрии меньше нуля, то говорят о левосторонней асимметрии, а если больше нуля, — то о правосторонней асимметрии. Коэффициент асимметрии для остатков в EViews рассчитан по следующей формуле:

В этом случае коэффициент асимметрии имеет следующее значение:

Как мы видим, в этом случае коэффициент асимметрии равен 4,939145, следовательно, в распределении остатков наблюдается очень сильная правосторонняя асимметрия, т. е. имеет место преобладание положительных остатков над отрицательными. Отсюда можно сделать вывод, что в динамике курса доллара к рублю чаще наблюдались резкие (вполне очевидно, что незначительные плавные колебания курса легко поддаются прогнозированию) подъемы, чем аналогичные падения. С фундаментальной точки зрения этот факт объясняется многолетней политикой Банка России по поддержанию слабого курса рубля.

Коэффициент эксцесса можно назвать индикатором «крутизны» распределения статистического ряда. Коэффициент эксцесса для нормального распределения равен 3. В том случае, когда этот коэффициент больше 3, это является показателем «островершинного» распределения, а если меньше 3, это свидетельствует о «плосковершинном» распределении статистического ряда. Коэффициент эксцесса для остатков в EViews вычислен по следующей формуле:

где расчетное стандартное отклонение а находится таким же образом, как и в формуле (4.10).

В нашем случае коэффициент эксцесса имеет следующее значение:

Поскольку коэффициент эксцесса равен 45,83162 (см. табл. 4.5), можно сделать вывод, что распределение остатков является «островершинным». По сути это означает, что в этом распределении имеется ярко выраженное ядро плотности распределения, внутри которого диапазон колебаний величины остатков незначителен, и рассеянное «гало», где разброс колебаний величины остатков весьма значителен. С точки зрения предсказания курса доллара такой характер распределения позволяет задавать, например, при 80 %-ном уровне надежности, не слишком широкие прогностические интервалы. Правда, если инвестор хочет иметь прогноз с более высоким 99 %-ным уровнем надежности, то из-за рассеянного «гало» ширина этих интервалов начинает резко увеличиваться.

В EViews есть возможность посмотреть в графическом виде оценку ядра плотности распределения с помощью опций DISTRIBUTION/ KERNEL DENSITY GRAPHS… (распределение/графики ядра плотности распределения). В появившемся мини-окне KERNEL DENSITY (ядро плотности распределения) по умолчанию устанавливается опция EPANECHNICOV, а всего их здесь семь и отличаются они друг от друга по используемому алгоритму сглаживания (рис. 4.2).

Назад Дальше