Вот этим вопросом мы сейчас и займемся.
Правда, еще одно замечание. Энергия в клетке генерируется за счет окисления. Что это такое? Мы знаем, что одним из самых сильных окислителей в природе (если не считать фтора) является кислород, и окисление вещества – это его соединение с кислородом. Но это не всегда так, а иногда и совсем не так. Для окисления кислород нужен не всегда. Например, есть организмы (их называют анаэробными), для которых кислород – смертельный яд, но окисление в их клетках, тем не менее, происходит. Так вот, как известно, все вещества состоят из атомов, а атомы из ядер, вокруг которых обращаются электроны. Нас сейчас не будут интересовать подробности, но ядро заряжено положительно, а электрон несет элементарный отрицательный заряд. Окисление атома или молекулы происходит, когда он или они отдают электроны. Таким образом, вещество, теряющее электрон, окисляется, а вещество, электрон приобретающее – восстанавливается.
Следовательно, окисление и восстановление могут происходить и в отсутствие кислорода. Больше того, одна часть органической молекулы может, при определенных условиях восстановить сама себя – то есть одна часть окисляется, отдавая электрон другой части.
Теперь, вооружившись теоретически, можем переходить к рассмотрению первого этапа энергетических преобразований глюкозы – к гликолизу.
Итак, глюкоза проникает в клетку, где ее тотчас атакует фермент гексокиназа. Происходит это в цитозоле, то есть в цитоплазме клетки – не в ядре, и не в митохондрии. (Названия биохимических субстратов запоминать, естественно, не надо. Надо лишь понять суть происходящего). Этот фермент катализирует фосфорилирование глюкозы – она присоединяет остаток фосфорной кислоты, на что расходуется одна молекула АТФ с образованием глюкозо-6-фосфата. (Это название говорит лишь о том, что фосфат присоединяется к 6 атому глюкозы). Глюкоза – это спирт, содержащий альдегидную группу, но есть еще кетоспирт – фруктоза, являющийся изомером глюкозы. Оба сахара довольно легко превращаются друг в друга. Так вот, следующим этапом глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат. После этого по ходу гликолиза происходит расходование еще одной молекулы АТФ (как мы видим, пока энергия только расходуется, но не создается). В результате еще одного фосфорилирования образуется фруктозо-1,6-дифосфат: фосфатные группы присоединились к обоим концам молекулы.
После этого, под воздействием специфического фермента происходит расщепление фруктозо-1,6-дифосфата на две фосфорилированных трехуглеродных молекулы – на дигидроксиацетонфосфат и глицеральдегид-3-фосфат. Первое из этих соединений легко переходит во второе, и именно оно участвует в дальнейших реакциях гликолиза.
Еще на минутку отвлечемся. В клетке присутствует особое вещество – никотинамидадениндинуклеотид, или, сокращенно НАД. Это соединение способно присоединять, переносить и отдавать протоны и электроны, то есть служит окислителем и восстановителем.
Так вот, глицеральдегид-3-фосфат взаимодействует с НАД, окисляется до фосфоглицериновой кислоты, и присоединяет неорганический фосфат с образованием 1,3-бифосфорной кислоты. Одновременно образуется НАДH + Н+. Вот теперь, наконец, происходит то, ради чего все, собственно, и затевалось. 1,3-бифосфоглицериновая кислота отдает фосфат АДФ с образованием 1 молекулы АТФ. Из молекулы глюкозы образовалось две молекулы 1,3-бифосфорной кислоты, и, значит, мы получили в ходе гликолиза уже 2 молекулы АТФ. Счет сравнялся. Дальше происходит еще несколько реакций, распространяться о которых не будем за недостатком места и, чтобы не загромождать изложение. В их результате образуется очень активное и богатое энергией вещество – фосфоенолпируват. Это соединение отдает фосфорильную группу АДФ с образованием еще одной молекулы АТФ и пировиноградной кислоты. Учитывая, что из одной молекулы глюкозы образуется две молекулы фосфоенолпирувата, мы имеем еще две молекулы АТФ. Побеждаем с преимуществом в два очка. То есть, как выяснилось, окисление может быть эффективным даже в отсутствие кислорода.
Что же происходит дальше? Дальше происходит самое интересное. Все, кто занимался спортом, слышали, что есть в клетках молочная кислота, которая накапливается в крови при интенсивной физической нагрузке. Начало этому накоплению полагается здесь, в исходе гликолиза. Дело в том, что при наличии кислорода пировиноградная кислота поступает в цикл трикарбоновых кислот (об этом мы еще поговорим), а, если кислорода недостаточно, то цикл этот оказывается блокированным, и природа идет по другому пути: с использованием НАДН + Н+ пировиноградная кислота восстанавливается в молочную кислоту с образованием НАД. Если снабжение кислородом восстанавливается, то молочная кислота окисляется в пировинградную кислоту и запускается цепь реакций цикла трикарбоновых кислот (цикл Кребса).
Именно поэтому в интенсивно работающей мышце, когда ей приходится работать в анаэробных условиях, активируется путь гликолиза с повышенным образованием молочной кислоты. (Продвинутые тренеры не зря контролируют допустимость нагрузок по уровню молочной кислоты в крови).
Цикл трикарбоновых кислот (цикл Кребса)
Дальнейшие события энергетического обмена клетки перемещаются в митохондрию, клеточную органеллу, которая и существует для того, чтобы продуцировать энергию в больших количествах, используя для этого кислород. Правда, до кислорода еще далеко. К его участию в обмене надо подготовиться, и такой подготовкой является цикл трикарбоновых кислот. Название трудное, но, если его растолковать, то оно уже не покажется таким сложным.
Кислота – это соединение, которое в растворе высвобождает протон (Н+), то есть положительно заряженный ион атома водорода. Чем больше в растворе таких протонов, тем сильнее кислота.
Кислоты могут быть органическими и неорганическими. В цикле Кребса участвуют только органические кислоты, похожие на уксусную кислоту. Она имеет простое строение, СН3-СООН. Кислотность определяется карбоксильной группой (СООН), которая высвобождает в раствор протон (ион водорода). Если в органической кислоте одна карбоксильная группа, то кислота называется монокарбоновой (однокарбоновой), если их две, то дикарбоновой (двухкарбоновой), а, если карбоксильных групп три, то кислота, соответственно, называется трикарбоновой. В ходе цикла первой образуется трикарбоновая лимонная кислота, и, поэтому, еще одно название этого основополагающего энергетического цикла – цикл лимонной кислоты.
Ключевым соединением цикла лимонной кислоты является вещество, называемое ацетилкоэнзимом А (сокращенно обозначается ацетил-СоА). Это соединение является конечным продуктом окисления углеводов, жиров и белков, и представляет собой эфир уксусной кислоты и коэнзима А. Откуда оно берется при окислении глюкозы? Оказалось, что оно образуется после окисления пировиноградной кислоты – продукта реакций гликолиза (см. предыдущий раздел), а сам коэнзим А представляет собой пантотеновую кислоту или витамин В5. Отметим этот первый витамин в цепях получения энергии.
Надо помнить, что витамины – это необходимые компоненты жизненно важных реакций, без которых невозможна жизнь. Витамины, кроме того, не синтезируются организмом человека, и их надо получать извне. Значит, их все же надо употреблять (либо в овощах и фруктах, либо в таблетках).
Кроме того, в митохондрии (в ее матриксе, во внутреннем отсеке) есть небольшое количество еще одного соединения – щавелевоуксусной кислоты (оксалоацетата). При соединении щавелевоуксусной кислоты (дикарбоновой кислоты) с ацетил-СоА (фактически с монокарбоновой уксусной кислотой) образуется трикарбоновая лимонная кислота.
Возникает вопрос: зачем организму такие сложности?
Ответ представляется неожиданно простым. Организм никогда не придумывает ничего кардинально нового, если нужны какие-то дополнительные функции. Новое пристраивается к хорошо известному старому. Когда обмен был анаэробным, клетка обходилась гликолизом. Когда потребность в энергии возросла, к нему были пристроены другие реакции, цепь которых была замкнута в круг, что позволяет тоньше регулировать процесс (многозвенный процесс, как это ни парадоксально, можно регулировать тоньше, так как есть возможность воздействовать на каждое звено по отдельности). Когда же в митохондриях появился кислород, то к циклу лимонной кислоты организм пристроил дыхательную цепь (о ней мы поговорим ниже).
Итак, что происходит в цикле лимонной кислоты?
Образованная в ходе гликолиза пировиноградная кислота окисляется, высвобождая углекислый газ, превращается в уксусную кислоту и присоединяется к коэнзиму А, и в результате получается ацетил-СоА, который соединяется с щавелевоуксусной кислотой, образуя лимонную кислоту. В этой реакции происходит восстановление НАД, который связывается с протонами и электронами. Запомним это, НАД нам еще понадобится.
Итак, что происходит в цикле лимонной кислоты?
Образованная в ходе гликолиза пировиноградная кислота окисляется, высвобождая углекислый газ, превращается в уксусную кислоту и присоединяется к коэнзиму А, и в результате получается ацетил-СоА, который соединяется с щавелевоуксусной кислотой, образуя лимонную кислоту. В этой реакции происходит восстановление НАД, который связывается с протонами и электронами. Запомним это, НАД нам еще понадобится.
Далее следует каскад окислительных реакций, в ходе которых от лимонной кислоты последовательно отщепляются две молекулы углекислого газа (этот углекислый газ является побочным продуктом и удаляется из клетки, а затем поступает в кровь и выводится из организма с выдыхаемым воздухом), восемь протонов (ядер атомов водорода) и электронов, которые переносятся на НАД и хинон. Эти два соединения дальше участвуют в процессах, происходящих в дыхательной цепи. Помимо всего, образуется и одна высокоэнергетическая связь в виде гуанозинтрифосфата (ГТФ).
В результате всех этих пертурбаций снова образуется молекула щавелевоуксусной кислоты, которая готова соединиться с ацетил-СоА, и цикл повторяется.
Однако все это всего лишь подготовка к главному действу – к вступлению протонов и электронов в дыхательную цепь окислительного фосфорилирования.
Окислительное фосфорилирование в дыхательной цепи
События, описанные ниже, происходят в мембране митохондрий – специализированных органелл клетки, где происходит поточное производство энергетической валюты – молекул АТФ.
В мембрану митохондрий встроены пять элементов дыхательной цепи – белок флавопротеин, хинон и три цитохрома.
НАДН+Н+, образованный в цикле Кребса, передает протоны и электроны флавопротеину. И еще два протона и электроны передаются непосредственно на хинон.
В дыхательной цепи происходит разделение зарядов – электроны попадают в митохондрию, накапливаясь на внутренней поверхности ее мембраны, а протоны выбрасываются, накапливаясь на наружной стороне мембраны.
Таким образом, произошло разделение зарядов. Дыхательная цепь – это биологический конденсатор, порождающий разность потенциалов по обе стороны мембраны митохондрии. Эта разность потенциалов обладает потенциальной энергией, которую можно использовать, если открыть шлюз, соединяющий наружную и внутреннюю поверхности мембраны. Такой шлюз, действительно, существует, и попеременно, открывается и закрывается.
При открытии канала протоны по градиенту потенциала устремляются внутрь митохондрии. При этом высвобождается энергия, которая путем сложного сопряжения генерирует 30 молекул АТФ. Ощутите разницу!
Протоны, поступающие внутрь митохондрии, могут уменьшить трансмембранную разность потенциалов, и сдвинуть pH в кислую сторону, а это нежелательно, так как уменьшение потенциала снизит выход АТФ, а увеличение кислотности нарушит функционирование клетки – организм не любит резких и сильных сдвигов в составе и кислотности внутренней среды. Этого не происходит, так как протоны соединяются с кислородом (единственное место в организме, где работает кислород – это митохондрии) и образуют воду.
Эта вода называется метаболической, так как образуется в процессе метаболизма (обмена веществ). В организме человека за сутки образуется порядка 200 мл метаболической воды, и этого, конечно, мало для покрытия потребности в ней.
Есть, однако, организмы (например, мучные черви), которые прекрасно чувствуют себя в безводных условиях, потому что им вполне хватает полученный таким способом метаболической воды.
Все это длинное описание (при сильном упрощении картины) было приведено только затем, чтобы показать, что в организме не происходит непосредственного окисления углерода кислородом. Углерод окисляется в других реакциях, а кислород образует воду, вступая в реакцию с водородом.
У дыхательной цепи есть и еще одна функция – поддержание температуры в организме. Для того, чтобы заставить дыхательную цепь порождать тепло, надо разобщить окисление и фосфорилирование, то есть ограничиться окислением.
Такая ситуация создается в особой ткани – буром жире. В нем, при открытии каналов в митохондриальной мембране энергия движущихся протонов идет на генерирование тепла.
Есть в человеческом организме еще одно место, где работает протонный насос, разделяющий заряды – это слизистая оболочка желудка. Протоны накапливаются в просвете желудка, определяя высокую кислотность желудочного сока.
Для лечения язвы желудка, которая, среди прочего, часто бывает обусловлена именно повышением кислотности, применяют ингибиторы протонной помпы – омепразол и родственные ему препараты. Они снижают кислотность желудочного сока, уменьшая, таким образом, его агрессивность в отношении слизистой оболочки.
Приложение 2. Энергетическая ценность продуктов питания
В приложении 1 был вкратце описан механизм энергетического обмена. Организм работает за счет химической энергии, то есть за счет энергии химических связей. Пища является топливом только потому, что в химических связях соединений, составляющих нашу еду, запасена энергия, высвобождающаяся при расщеплении этих соединений.
Основополагающим законом мироздания является первое начало термодинамики – закон сохранения энергии (общая энергия системы остается постоянной, но в разных ее частях – «если в одном месте прибавится, то в другом месте столько же убавится»).
Это означает, что без еды мы лишимся источника энергии и, стало быть, энергетическая ценность еды должна соответствовать затратам энергии на повседневную работу и на поддержание жизнедеятельности в покое.
Главные составные части пищи – это белки, углеводы и жиры.
Белки расходуются, главным образом, на воссоздание структуры тела, и гореть в топке белки начинают только в чрезвычайных ситуациях, когда потребность в энергии невозможно покрыть из других источников – углеводов и жиров, например, при исчерпании запасов гликогена в печени и мышцах, или при невозможности использовать жир (или при его отсутствии).
Однако, в общем балансе энергии белки тоже учитываются, ибо достаточно велик расход энергии на синтез белков организма и поддержание его доли в тканях.
Теперь, перейдем к конкретному содержанию питательных веществ и их калорийности. Калорийность – это мера содержания энергии в каком-то веществе. Есть понятие калорийности топлива. (Одна калория – это количество тепла, необходимое для нагревания одного грамма воды на один градус в стандартных условиях на уровне моря). Так как энергия всегда может в эквивалентных количествах переходить из одной формы в другой, то в калориях измеряют и энергетику организма. (Можно измерять ее и системе СИ – в джоулях, но привычнее в калориях; при желании можно показатель в калориях умножить на 4,2 и получить величину в джоулях; соответственно, так же переводят килокалории в килоджоули).
В таблице указаны пищевые продукты, их энергетическая ценность в килокалориях на 100 г веса и содержание углеводов, жиров и белков в процентах.
Сразу стоит отметить, что приблизительное содержание килокалорий в 100 граммах жиров (с небольшими вариациями) составляет 900 ккал, а в белках и углеводах – 400 ккал.
Примечание: калорийность алкогольных напитков определяется, по большей части, калорийностью спирта. Энергия спирта откладывается в жир (в меньшей степени), и идет на образование тепла (в основном), создавая обманчивое чувство комфорта. Поэтому, пить алкоголь на морозе категорически нельзя! Только после возвращения в теплое помещение – «для сугреву».
Калорийность и состав тортов колеблются от 300 до 550 ккал/100 г, при доле жира от 10 до 20 процентов и при доле углеводов от 30 до 60 процентов.
И так далее. Комментарии, как говорится, излишни. Блюда очень калорийны, содержат слишком много углеводов и жиров. Поэтому, обедать в Маке не рекомендуется, ну, если только побаловать себя раз в месяц или два…
Источник: www.calorizator.ru