Кеплер вскочил из-за стола, забыв про ужин, и приступил к расчётам.
Нужно было решить – где поместить Солнце в орбитальном эллипсе – в его центре или в его фокусе?
Кеплер проверял все варианты.
И вот настал знаменательный день: когда Кеплер поместил Солнце в точку, которая была одновременно фокусом эллиптических орбит и Марса, и Земли, то все наблюдения Тихо Браге, как по волшебству, улеглись на теоретическую кривую!
Новая теория избавилась от эпициклов, полностью объяснила попятное движение Марса и других планет по небу и заодно низвела Землю до обычной планеты с некруговой орбитой – как и у остальных небесных тел, вращающихся вокруг Солнца.
Такие ослепительные моменты выпадают раз в жизни – и то далеко не в каждой. Кеплер был счастлив до слёз.
* * *В 1609 году Иоганн Кеплер публикует книгу «Новая астрономия», в которой содержатся два закона небесной механики, известных сейчас как первый и второй законы Кеплера:
1. Форма планетной орбиты – эллипс, в одном из фокусов которого находится Солнце.
2. Скорость движения планеты по орбите меняется так, что линия, соединяющая планету с Солнцем, заметает одинаковую площадь за каждую единицу времени. (Другими словами, скорость орбитального движения планеты больше возле Солнца и меньше вдали от него.)
– Что такое «заметает»? – спросила Галатея.
– Возьми линейку и проведи её ребром по пыльной поверхности. Всё, что станет почище, – это и есть площадь, которую «замела» твоя линейка, – пояснила Никки.
– Линейка у меня есть, но где мне взять такую пыльную поверхность? – задумалась Галатея.
– Я легко помогу тебе в этом, – успокоил брат сестру, и Никки продолжила:
– «Новая астрономия» содержала 900 страниц трудоёмких математических вычислений. В середине этого математического моря Кеплер оставил плавать такое эмоциональное замечание: «Если этот утомительный метод вызывает в вас отвращение, то пусть он также вызовет ваше сочувствие ко мне, потому что я проделал эти выкладки не менее семидесяти раз…»
Благодаря точнейшим наблюдениям Браге и математическому гению Кеплера, гелиоцентрическая система Коперника всего за шестьдесят лет обрела совершенное математическое воплощение и превосходное наблюдательное подтверждение, чего теория Птолемея не смогла достичь и за полторы тысячи лет.
Коперниканская теория сумела прекрасно объяснить движение Земли и пяти видимых планет, известных с незапамятных времён.
Кеплер не смог выполнить завещание Тихо Браге и подтвердить его теорию строения планетной системы. Но он восславил своего старшего коллегу не как теоретика, а как великого наблюдателя.
Девятью годами позже Кеплер добавил к двум первым законам небесной механики ещё и третий закон, связавший среднее расстояние и период обращения планеты.
Никки обратилась к детям:
– Хотите самостоятельно открыть третий закон Кеплера?
– Хотим! – воскликнул Андрей.
– Э-э-э… да! – поддержала его Галатея.
Никки кивнула и принялась писать на листке бумаги цифры, по ходу дела поясняя:
– Если принять среднее расстояние от Земли до Солнца за единицу (она называется астрономической единицей и обозначается – а. е.), то средние расстояния от Солнца и периоды обращения шести планет, известных во время Кеплера, будут таковы:
Меркурий: 0,387 а. е., 0,241 года;
Венера: 0,723 а. е., 0,615 года;
Земля: 1,000 а. е., 1,000 год;
Марс: 1,524 а. е., 1,881 года;
Юпитер: 5,203 а. е., 11,862 года;
Сатурн: 9,539 а. е., 29,458 года.
Никки протянула листочек детям и сказала:
– Завтра вооружитесь калькулятором и попробуйте обнаружить изумительную закономерность, спрятанную в приведённых выше числах.
(Вы тоже это можете сделать, читатель. Если же вам недосуг открывать законы неба, и вы просто хотите проверить закон, найденный Кеплером, то вычислите куб среднего расстояния планеты от Солнца и разделите его на квадрат периода обращения планеты – и вы получите, что у ВСЕХ планет Солнечной системы эта величина практически одинакова – даже если рассчитать эту величину для Урана и Нептуна, неизвестных во времена Кеплера, или для любого из сотен тысяч открытых ныне астероидов!)
Никки, озадачив ребят, продолжила:
– С помощью своих законов Иоганн Кеплер сумел точно предсказать положения всех планет на небе на сотни лет вперёд. Кеплер, основываясь на наблюдениях Тихо Браге, опубликовал за свой счёт «Рудольфовы таблицы», которые пользовались огромной популярностью и были надёжным инструментом астрономов и моряков в течение двухсот лет.
Достижения Кеплера этим далеко не исчерпываются. Например, переписываясь с Галилеем, он предложил новый тип телескопа, который вскоре вытеснил схему телескопа самого Галилея.
Многие из этих научных достижений пришлись не на пражский период, а на заключительную и очень беспокойную часть жизни Кеплера.
* * *В 1611 году спокойная жизнь императорского астронома Кеплера закончилась: его старший сын умирает от оспы, а жена – от эпилепсии. В это же время император теряет корону, и Кеплер переезжает в Линц – столицу Верхней Австрии, где женится второй раз на дочери столяра.
Жизнь продолжает испытывать Кеплера на прочность.
Мать Кеплера, живущая в Леонберге, обвиняется в колдовстве, её сажают на железную цепь у городских ворот.
– Пожилую женщину сажают на цепь у ворот? – переспросила недоверчиво Галатея.
– Обвинение в колдовстве было смертельно опасно в семнадцатом веке: только за одну зиму в Леонберге сожгли шесть женщин, объявленных ведьмами. Тётка матери Кеплера была сожжена по тому же обвинению.
Кеплер защищает свою мать и добивается её оправдания. Но, измученная долгой неволей, Катарина Кеплер умирает через год после освобождения.
Позже Линц попадает в осаду восставших крестьян-протестантов и сгорает в пламени религиозной войны.
Кеплер снова переезжает – уже в немецкий город Ульм. Он не подозревает, что через двести пятьдесят лет в этом местечке родится Эйнштейн – человек, который сможет уточнить законы Кеплера и вывести небесную механику на уровень небесной физики.
Финансовые дела у Иоганна Кеплера идут всё хуже. Он всё ещё является придворным астрономом, но зарплату ему уже многие годы не выплачивают: у нового императора слишком много военных расходов.
Вся Европа охвачена кровопролитной Тридцатилетней войной.
Осенью 1630 года Кеплер отправляется к императорскому двору, надеясь получить хотя бы часть жалованья. Стоит слякотный холодный ноябрь. По дороге Иоганн Кеплер сильно простужается и умирает…
На его могиле высечены латинские строки, написанные самим Кеплером:
* * *Наследникам Кеплера досталась поношенная одежда, двадцать два флорина наличными, тридцать тысяч флоринов невыплаченного жалованья и архив научных рукописей, большая часть которых в восемнадцатом веке была приобретена Петербургской академией наук.
Через несколько лет после смерти Кеплера была опубликована последняя и неожиданная книга великого учёного: научно-фантастическое повествование об астрономе, который летит на Луну и наблюдает небо с гораздо более выгодной точки, чем Земля. Видимо, это было первое в истории научно-фантастическое произведение (с ударением на «научное»).
– Эй, хочу почитать эту книгу! – воскликнул Андрей.
Никки задумчиво сказала:
– Кеплер был болезненным и небогатым человеком. Он сам и его семья страдали от войн и эпидемий, религиозных преследований и инквизиции. Но одновременно он был очень счастливым учёным, который открыл истинные законы механики неба.
Кеплер сумел преодолеть все трудности и вывести точные законы, которые до сих пор используют астрономы и небесные механики. Именем Кеплера названы кратеры на Луне и Марсе, астероид номер 1134 и сверхновая звезда, университет в Линце и станция венского метро, а также космический телескоп НАСА, созданный для поиска планет возле других звёзд – и действительно открывший многие сотни новых планет. Но самое главное – стоит вам зайти в обсерваторию или в астрономический институт – и вскоре вы услышите привычное среди астрономов выражение: «Согласно закону Кеплера…» Для настоящего учёного это высшая из наград.
Андрей сказал:
– Да, «согласно закону Андрея Шихина» звучало бы здорово.
Никки улыбнулась и встала с кресла, собираясь покинуть детскую спальню.
– В 1609 году, когда Кеплер опубликовал свою книгу и совершил переворот в небесной механике, произошла революция и в наблюдательной астрономии – был изобретен телескоп. Совершил эту революцию Галилей, один из основателей современной науки. Но это тема для другой истории, которую я вам расскажу в следующий раз.
Никки вышла и аккуратно затворила за собой дверь.
Примечания для любопытныхВильям Гильберт (1544–1603) – английский физик и придворный врач. Изучал магнитные явления. Ввел термин «электрический».
Иоганн Кеплер (1571–1630) – выдающийся немецкий астроном, математик и оптик. Открыл точные законы движения небесных тел.
Галилео Галилей (1564–1642) – великий итальянский учёный, создавший первый телескоп.
Альберт Эйнштейн (1879–1955) – знаменитый учёный, создавший общую теорию относительности, заменившую в двадцатом веке теорию гравитации Ньютона.
Фокус эллипса. Забейте два гвоздика в плоскую поверхность. Привяжите к ним верёвку, которая будет немного длиннее расстояния между гвоздями. Возьмите карандаш и натяните им верёвку так, чтобы получился треугольник. Проведите кривую линию этим карандашом, следя за тем, чтобы верёвка все время была натянута и свободно скользила по карандашу. Перебросьте верёвку и карандаш на другую строну гвоздиков и снова опишите кривую, которая должна соединиться с первой кривой и образовать замкнутую фигуру, которую называют эллипс.
Два гвоздика – это два фокуса этого эллипса, а точка на середине расстояния между гвоздями – это центр эллипса.
Чем длиннее верёвка, тем ближе становится эллипс к окружности (другими словами, эксцентриситет, или сплюснутость, эллипса уменьшается до нуля).
Флорин – монета, распространённая в средневековой Европе. Чеканилась из золота или серебра.
НАСА – Национальное управление США по аэронавтике и исследованию космоса. Создано в 1958 году в ответ на запуск советского спутника и отвечает за космические исследования, разработку ракет и спутников. Все фотографии космоса и Земли, полученные НАСА, являются общественным достоянием и могут свободно копироваться (со ссылкой на источник).
Сказка о заключённом Галилее и физическом принципе вагона-ресторана
– Иногда дети совершают удивительные открытия, – задумчиво сказала Никки.
– Иногда? – возмутилась Галатея. – Да мы каждый день делаем это!
– К сожалению, взрослые редко признают детские открытия. Но однажды на берегу тихого голландского канала дети играли со стеклянными линзами. Это очень увлекательное занятие: ведь так интересно собирать лупой солнечные лучи в жгучие яркие точки или рассматривать в увеличительные линзы свои пальцы и чужие носы, зелёные листья и чёрных букашек.
– Я тоже люблю увеличительные стёкла! – сказала Галатея.
Андрей недовольно посмотрел на младшую сестру, перебившую рассказ королевы Никки.
– Ребятишки, конечно, пытались смотреть и вдаль, прикладывая линзы к глазам, но в этом случае они ничего не видели, кроме тумана.
Но сегодня самый шустрый мальчонка приложил к глазу одну линзу, держа другую в вытянутой руке. И закричал от восторга. О, чудо! Оказывается, если смотреть в две линзы, то они приближают крыши далёких зданий и даже паруса кораблей, плывущих у горизонта!
– А вот этого я не догадалась сделать! – потрясённо прошептала Галатея.
– Дети немедленно рассказали о своём открытии отцу – оптику Липперсгею. Липперсгей сам посмотрел в принесённые стекляшки, восхитился результатом и поместил обе линзы в длинную трубку – чтобы не держать стёкла руками.
Так была изобретена подзорная труба.
Весть о диковинном инструменте, который позволял далёкое сделать близким, мгновенно разнеслась по всей Европе.
В 1609 году эту новость услышал итальянский учёный Галилей и сразу понял огромное значение такой трубы для астрономии.
В это время он жил в Венецианской республике, известной своими искусными стекольными мастерами. С их помощью Галилей создаёт собственный телескоп, направляет его в небо – и открытия посыпались с неба как из рога изобилия! Галилей обнаруживает, что:
– Луна неровная и покрыта горами и кратерами!
– Вокруг Юпитера вращаются четыре спутника!
– Млечный Путь вовсе не туман, а скопление многочисленных звёзд!
Галилей немедленно публикует о своих открытиях книгу «Звёздный вестник». Весь тираж книги, пятьсот пятьдесят экземпляров, продан неслыханно быстро – за неделю. Европа потрясена звёздными новостями, и даже короли заказывают себе телескопы.
– И всё это благодаря детям! – гордо сказала Галатея.
– А открытия продолжаются!
Галилей:
– Находит на Солнце тёмные пятна и узнаёт, что Солнце вращается вокруг своей оси!
– Замечает, что Сатурн имеет по краям выступы (которые впоследствии – в более сильном телескопе Гюйгенса – превратятся в кольцо Сатурна)!
– Обнаруживает, что планета Венера имеет фазы: как и Луна, она становится то светлым серпиком, то сияющим кругом! Причем и серпиком, и кружком Венера становится при приближении к Солнцу.
Галилей понимает, что последнее открытие исключительно важно, ведь поведение фаз Венеры доказывает, что она вращается не вокруг Земли, а вокруг Солнца и близко к нему. Если бы Венера вращалась согласно теории Птолемея: вокруг Земли и ближе к ней, чем Солнце, – то при приближении на небе к Солнцу она всегда становилась бы серпом – как Луна. Значит, прав был Коперник, а не Птолемей с Аристотелем. А вот Марс никогда в серп не превращается – значит, Марс от Солнца дальше, чем Земля.
– Постой, Никки, я хочу проверить! – закричала Галатея. Она немедленно взяла красное яблоко из вазы, Андрей вооружился жёлтым плодом – и дети стали кружить вокруг лампочки-солнца, пытаясь понять логику Галилея.
Действительно, освещённая часть далекого красного яблока-Марса, летающего вокруг лампочки и наблюдателя, никогда не становилась ни серпом, ни даже половинкой, зато превращалась в освещенный круг как раз тогда, когда планета была дальше всего от Солнца. Зато светлая часть жёлтого яблока-Венеры, летающего вокруг лампочки ближе кресла наблюдателя, превращалась то в узкий серпик, то в полный круг – когда яблоко проходило мимо Солнца-лампочки.
– Всё, можно рассказывать дальше! – наконец наигралась в космос Галатея.
А Андрей проворчал:
– Странный человек был этот Птолемей. Как он мог считать, что Венера и Солнце по отдельности вращаются вокруг Земли, если Венера никогда не отдаляется от Солнца и никогда не видна в полночь?
Никки терпеливо продолжила:
– Галилей был коперниканец, и телескоп дал ему в руки мощное оружие против Аристотеля, с которым он давно воевал.
Эту войну Галилей начал с молодых лет.
Галилео Галилей происходил из обедневшей семьи венецианских дворян и музыкантов. Он родился в один год с Шекспиром, был моложе Тихо Браге на восемнадцать лет, но старше Кеплера на семь лет.
В семнадцать лет Галилей поступил в Пизанский университет. В университете Галилей был отчаянным спорщиком, обо всём имеющим собственное мнение. Отец Галилея хотел, чтобы он изучал медицину. Но юноша тянулся к маятникам, механике и математике. Отец негодовал: «Врачи всегда богаты, а математики – сплошь бедняки!» К счастью, дети редко слушаются родителей в выборе жизненного пути.
Андрей и Галатея хитро переглянулись.
– Галилей добился своего и стал профессором математики Пизанского университета. Правда, отец всё-таки оказался прав: зарплата новоиспеченного профессора математики оказалась в тридцать раз меньше, чем зарплата тогдашнего профессора медицины!
Изучение физики и механики в семнадцатом веке заключалось в зазубривании трудов Аристотеля, без каких-либо сомнений и проверок. Такое бездумное обучение внушало отвращение Галилею. И он начал борьбу с системой непогрешимого Аристотеля.
Галилей был честолюбив и смел, иначе бы он не объявил войну Аристотелю, чей тысячелетний авторитет был освящен церковью и охранялся суровой инквизицией.
Недоверчивый Галилей решил проверить известное утверждение Аристотеля, который считал, что скорость падения тел зависит от их веса.
Очевидно, что такой закон Аристотель сформулировал, наблюдая медленное, по сравнению с камнями, падение листьев или перьев. Значит, если одно тело в два раза тяжелее другого, оно и падать должно в два раза быстрее. В течение двух тысяч лет никто из учёных или обычных людей не пробовал проверить это мнение авторитетного Аристотеля.
– Никто-никто не пробовал проверить такую простую вещь? – потрясённо прошептала Галатея. – За две тысячи лет?!
Никки кивнула:
– Таково было состояние невозмутимых умов к семнадцатому веку. Но не таков был скептик Галилей. Он взял два железных шара – один весом в тридцать килограммов, а другой – триста граммов. Согласно Аристотелю, поскольку первый весит в сто раз больше, чем второй, и падать должен в сто раз быстрее. Но Галилей быстро убедился, что если сбрасывать шары разного веса с башни или если скатывать их по ровной горке, то скорость их падения или скатывания практически одинакова! Так Галилей опроверг одно из главных положений Аристотелевой физики.