Рождение сложности: Эволюционная биология сегодня - Александр Марков 18 стр.


Была раньше такая хорошая игрушка — радиоконструктор (что-то вроде нынешнего "Лего", только из конденсаторов, ламп, катушек и прочих радиодеталей). Простые работающие устройства — такие, например, как детекторный приемник — из этого конструктора собирались с достаточно высокой вероятностью путем абсолютно случайного, произвольного соединения деталек. Этот пример показывает, что если "детальки" хороши, то даже случайное их комбинирование вполне может породить что-то полезное и жизнеспособное. А в "эволюционном конструкторе" детальки, несомненно, самого высшего сорта — отшлифованные естественным отбором, проверенные и испытанные многими поколениями живых "испытателей".

Кроме того, геном организма или отдельный ген — это далеко не "Война и мир", а нечто гораздо более помехоустойчивое. Если мы заменим случайным образом букву, слово или предложение в талантливом романе, то наверняка хоть чуть-чуть, но испортим произведение. Если мы заменим в гене нуклеотид или в белке аминокислоту, с очень большой вероятностью не произойдет абсолютно ничего плохого (более того, есть даже вполне реальный шанс, что изменение окажется полезным, но об этом чуть позже).

Белковая молекула обычно состоит из нескольких сотен аминокислот, но только очень немногие из них действительно необходимы для того, чтобы белок исправно выполнял свою функцию. Если речь идет о ферменте, то для его работы абсолютно необходимы в основном те аминокислоты, которые составляют так называемый "активный центр". Активный центр — это то место белковой молекулы, которое, собственно, и катализирует реакцию. Кроме того, могут оказаться важными и некоторые аминокислоты, определяющие пространственную конфигурацию молекулы — то, в какую фигуру она самопроизвольно "свернется" после того, как будет синтезирована. Например, в построении пространственной структуры фермента участвуют цистеины — это аминокислоты, содержащие серу, которые образуют дисульфидные мостики (-S-S-), скрепляющие между собой различные витки, лопасти и спирали белковой молекулы.

Такие принципиально важные аминокислоты составляют лишь малую часть белка. Более того, это даже не конкретные наборы аминокислот, которые должны находиться в строго определенных местах белковой молекулы, а довольно расплывчатые "рисунки", "паттерны", или, как их официально называют, мотивы.


Белки с одинаковой функцией могут сильно различаться по структуре. Вот аминокислотная последовательность фермента фруктозо-бисфосфат альдолазы жгутиконосца Euglena gracilis. Это один из ферментов гликолиза — важного биохимического процесса, в ходе которого, как мы помним, клетка тратит часть энергии, заключенной в молекуле глюкозы, для синтеза двух молекул АТФ без использования кислорода. Каждая буква соответствует определенной аминокислоте (Р — пролин, D — аспарагиновая кислота, F — фенилаланин, К — лизин и т.д.):

PDFPKDLKGV LDGNQVRTLF DFAQKKGFAI PAVNCTSSSTVNWLERARD THNPVIIQVS QGGAAFYCGK GVKDEKLIAS VDGSVALAHH VRAVAHTMAP VWHSDHCAK KLLPWFDGML DADGEIFCEH GVPLFSSHML DLSEENDEED IGTCVKYFTR MAKLNLWLEM EIGMTGGVED GVDNSGVAND KLYTSSEQVF AVHKALGASS PNFSIAAAFG NVHGVYKPGN VKLQPNLLKE HQDYARKQLS SSEDHPLYLW FHGPSGSTDA EIHEAVRNGVVKMNLDTDMQ WAYWDGLRQF EAKKHDYLQG QIGNPEGPDK PNKNYYDPRK WIREAELGML ARVKVAFKAV ELPGGLKEFI GIP (Все "расшифрованные" последовательности генов и белков лежат в Интернете в открытом доступе. Данная последовательность доступна по адресу: http://www.ebi.uniprot.org/entry/Q42729_euggr.).

А вот тот же самый фермент бактерии Mycoplasma pneumoniae:

MLVNIKQMLQ HAKQHHYAVP HININNYEWA KAVLTAAQQA KSPIIVSTSE GALKYISGHQ VWPMVKGLV DALKITVPVA LHLDHGSYEG CKAALQAGFS SIMFDGSHLP FQENFTKSKE LIELAKQTNA SVELEVGTLG GEEDGIVGQG ELANIEECKQIATLKPDALA AGIGNIHGLY PDNWKGLNYE LIEAIAKATN LPLVLHGGSG IPEADVKKAI GLGISKLNIN TECQLAFAKA IREYVEAKKD LDTHNKGYDP RKLLKSPTQA IVDCCLEKMQ LCGSTNKA (http://www.ebi.uniprot.org/entry/alf_mycpn).

На первый взгляд заметить сходство между этими белками очень непросто. На второй, впрочем, тоже. А ведь это, по молекулярно-генетическим меркам, весьма похожие друг на друга, близкородственные белки! У них есть длинный сходный участок (от 16-й до 333-й аминокислоты первой молекулы и от 5-й до 265-й аминокислоты второй), в пределах которого совпадает целых 25% аминокислот. Кроме того, некоторые другие аминокислоты в двух белках хотя и разные, но близкие по своим химическим свойствам.


Реакция, которую катализирует фермент фруктозо-бисфосфат альдолазы.


Для того чтобы обнаружить это сходство и оценить его количественно, можно воспользоваться специальной программой BLAST, свободно доступной в Интернете по адресу http://www. ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi. TaM надо просто вставить две аминокислотные последовательности в два окошка и нажать кнопку.

Такой уровень сходства при сравнении белков представителей разных надцарств живой природы (мы сравнивали эукариот с бактериями) считается очень высоким. В данном случае, возможно, этот результат объясняется тем, что предки эвглены сравнительно недавно приобрели соответствующий ген путем горизонтального переноса от каких-то бактерий. У высших эукариот фруктозо-бисфосфат альдолазы этого семейства вообще не встречаются. У нас с вами, например, они совсем другие.

Читатель может попробовать самостоятельно сравнить между собой фруктозо-бисфосфат альдолазы различных организмов (найти их можно, например, в базе данных PFAM http://pfam.sanger.ac.uk/, осуществив поиск по ключевым словам "fructose bisphosphate aldolase"). Любой желающий может легко убедиться, что если сравнить один и тот же (по функции) фермент, взятый у человека и, допустим, у кишечной палочки Escherichia coli, то программа сравнения, скорее всего, выдаст безрадостное "no significant similarity found" — "значимого сходства не обнаружено". Это, впрочем, не значит, что никакого сходства действительно нет — оно есть (это те самые неопределенные "мотивы", о которых шла речь выше), но для его выявления необходимы более мощные аналитические средства, чем программа BLAST.

Тем не менее эти столь разные белки примерно с одинаковой эффективностью выполняют одну и ту же работу, то есть катализируют одну и ту же биохимическую реакцию.


Конечно, не все различия между разными белками, выполняющими одну и ту же функцию, случайны и бессмысленны. Некоторые из них обеспечивают тонкую подстройку фермента под конкретные особенности той или иной клетки. Однако, как показывает генно-инженерная практика, довольно часто эти белки оказываются вполне взаимозаменимыми. Это значит, что если заменить у какого-либо организма его собственный ген на чужой, кодирующий фермент, тот же по функции, но иной по структуре, то такой генно-модифицированный организм с большой вероятностью окажется вполне жизнеспособным.

Из этого видно, что "подобрать" белок с нужной функцией методом случайного перебора аминокислот в принципе не так уж сложно. Для этого вовсе не требуется правильно угадать все несколько сотен аминокислот, составляющих молекулу белка. Достаточно подобрать лишь некий довольно расплывчатый "мотив".

Эксперименты показывают, что такая технология отлично работает. Среди коротких белковых молекул, искусственно синтезированных путем случайного комбинирования аминокислот, удается отыскать белки практически с любой каталитической активностью. Конечно, эффективность таких катализаторов ниже, чем у настоящих ферментов, но это неважно. Главное, чтобы отбору было за что "зацепиться", и он со временем доведет функцию до совершенства. Эта технология годится не только для белков, но и для функциональных РНК. Именно таким способом исследователи ищут и находят новые рибозимы — РНК с ферментативными свойствами (см. главу "Происхождение жизни").

Отобрав подходящие молекулы, можно затем раз за разом вносить в них небольшие случайные изменения и отбирать лучшие из получившихся вариантов. Это называют "методом искусственной эволюции". Само его существование и широкое практическое применение является отличным доказательством работоспособности дарвиновской модели.

Однако изготовить высокоэффективный белковый фермент с изначально заданными свойствами методом искусственной эволюции — дело довольно долгое и трудоемкое. Поэтому ученые в последние годы прикладывают большие усилия, чтобы не только выявить, но и понять связи между последовательностью аминокислот и функцией белка. Если эта цель будет достигнута, ферменты с заданными свойствами можно будет проектировать, то есть просто вычислять на компьютере искомую последовательность аминокислот. Это сэкономит огромные средства и позволит осуществить настоящую революцию в химической промышленности. Ведь ферменты — чрезвычайно эффективные катализаторы, способные в тысячи раз ускорить синтез чуть ли не любых химических соединений.

Вообще белки — удивительные вещества, заключающие в себе немало парадоксов. Как мы уже знаем, многие аминокислоты, входящие в состав белковой молекулы, могут быть заменены или удалены без заметного изменения свойств белка. С другой стороны, замена всего одной-двух аминокислот в активном центре белковой молекулы может привести к радикальному изменению свойств фермента. В большинстве случаев, конечно, фермент от этого портится, снижает производительность или вовсе становится нефункциональным. В других случаях это может привести к модификации или даже полной смене функции, то есть к появлению нового фермента.

Вообще белки — удивительные вещества, заключающие в себе немало парадоксов. Как мы уже знаем, многие аминокислоты, входящие в состав белковой молекулы, могут быть заменены или удалены без заметного изменения свойств белка. С другой стороны, замена всего одной-двух аминокислот в активном центре белковой молекулы может привести к радикальному изменению свойств фермента. В большинстве случаев, конечно, фермент от этого портится, снижает производительность или вовсе становится нефункциональным. В других случаях это может привести к модификации или даже полной смене функции, то есть к появлению нового фермента.


Разнообразие белков началось с немногих исходных "мотивов".

Некоторые ученые предполагают, что на самых ранних этапах становления жизни — возможно, еще в РНК-мире — методом "слепого поиска" было найдено несколько сотен базовых аминокислотных мотивов, соответствующих основным функциям белков. Изначально эти функции были реализованы на основе очень коротких белковых молекул (пептидов), причем эффективность функционирования была поначалу низкой. Но все равно это был большой шаг вперед по сравнению с неуклюжими рибозимами. Эти первичные "мотивы", оформленные в виде коротких пептидов, в дальнейшем легли в основу всех ныне существующих надсемейств белков.


Конечно, разумное просчитанное проектирование может значительно ускорить создание новых белков, на которое эволюции требуются миллионы лет. Иногда, впрочем, белки с новыми функциями возникают в природных популяциях живых организмов гораздо быстрее — буквально за считанные годы или даже месяцы.

Здесь нужно различать две принципиально разные ситуации. Иногда новые белки возникают благодаря особым механизмам, специально для этого существующим в клетке. Таковы, например, образование новых антител в ответ на проникновение в организм новой инфекции или целенаправленное изменение поверхностных белков у некоторых патогенных бактерий, имеющее целью обмануть иммунную систему хозяина. Эти особые механизмы направленного изменения генома сами являются результатом длительной эволюции и будут рассмотрены нами отдельно в главе "Управляемые мутации". Но новые белки иногда могут быстро возникать и по обычной, классической схеме — за счет случайных мутаций и отбора. Самый известный пример такого рода — поразительно быстрая выработка бактериями устойчивости к антибиотикам. Как выяснилось, бактерии предпочитают не пассивную, а активную защиту: они не пытаются "обойти" или видоизменить тот биохимический процесс, по которому "бьет" новый антибиотик, а вырабатывают новый фермент, способный активно атаковать и обезвреживать лекарственное средство.

Хотя возникновение подобного фермента требует не одной мутации, а нескольких, классическая эволюционная модель вполне способна объяснить это явление. В слаженном появлении целого комплекса необходимых мутаций нет ничего противоречащего простейшей схеме "единичные случайные мутации плюс отбор". Кроме того, на примере развития устойчивости к антибиотикам можно понять, как работает один из механизмов, ограничивающих число допустимых эволюционных траекторий движения к заданной цели. Одним из следствий подобных ограничений могут быть параллелизмы — независимое возникновение сходных признаков в разных эволюционных линиях.


Параллелизмом, или параллельной эволюцией, называют независимое появление похожих признаков у разных организмов. Параллелизмы очень широко распространены в природе, и биологи-теоретики уделяют много внимания этому явлению. В нем отчетливо проявляется закономерный (неслучайный) характер эволюции. Одной из основных причин параллелизмов является ограниченность возможных путей эволюционного преобразования организма. Сформулированный Н. И. Вавиловым "Закон гомологических рядов в наследственной изменчивости" (http://evolbiol.ru/vavilov.htm) позволил связать это явление с закономерностями внутривидовой изменчивости. У близких видов встречаются одинаковые вариации — например, у большинства злаков есть остистые и безостые формы. Палеонтология дает много ярких примеров схожести путей эволюции в разных группах (мы поговорим об этом подробно в главе "Направленность эволюции").


Яркий пример параллельной эволюции: сумчатый саблезубый тигр Thylacosmilus из плиоцена Южной Америки (вверху) и "обычный* саблезубый тигр Smilodon из плейстоцена Северной Америки.


Пути эволюции предопределены на молекулярном уровне

В наши дни бурное развитие молекулярной биологии привело к тому, что многие важные биологические закономерности, в том числе явление параллельной эволюции, временно оказались как бы за рамками "настоящей серьезной науки" — просто потому, что их пока не удается объяснить на молекулярном уровне.

Поэтому предпринятая учеными из Гарвардского университета попытка найти молекулярные основы канализированности (ограниченности возможных путей) и повторяемости эволюции имеет большое теоретическое значение (Daniel M. Weinreigh, Nigel F. Delaney, Mark A. DePristo, Daniel L. Hartl Darwinian evolution can follow only few mutational paths to fitter proteins // Science. 2006. v.312. p.111-114). В качестве модели исследователи выбрали адаптацию бактерий к антибиотикам — сравнительно простой эволюционный процесс, высокодетерминированный и повторяемый и к тому же имеющий большое практическое значение. Исследование наглядно показало, что в эволюции может быть реализована лишь очень небольшая часть из общего числа теоретически существующих путей "из точки А в точку Б".

Бактерии приспосабливаются к антибиотикам из группы бета-лактамов (к которым относится, в частности, пенициллин) благодаря изменениям гена, кодирующего фермент бета-лактамазу. Предполагается, что мутации возникают случайно, причем вредные мутации отсеиваются отбором, а полезные закрепляются.

В ходе адаптации бактерий к цефотаксиму — антибиотику третьего поколения из группы бета-лактамов — в исходный вариант гена бета-лактамазы вносится пять вполне конкретных мутаций, в результате чего устойчивость к антибиотику возрастает в 100 000 раз. Но такой эффект дают только все пять мутаций вместе. Понятно, что одновременное появление сразу пяти "нужных" мутаций невероятно: они должны появляться и фиксироваться последовательно, одна за другой. Значит, на пути к конечной цели организм должен пройти через четыре промежуточных состояния. Если хотя бы одно из них окажется менее выгодным, чем предыдущее, оно будет забраковано отбором, и конечная цель не будет достигнута.

Теоретически существует 5(!) = 120 различных траекторий движения от исходного состояния (отсутствие устойчивости к цефотаксиму) к конечному, то есть к очень высокой устойчивости. Экспериментальным путем ученые установили, что из 120 теоретически возможных путей последовательного приобретения пяти мутаций большинство (102) вообще не могут реализоваться, так как требуют на каком-то этапе временного снижения приспособленности (в данном случае под "приспособленностью" понимается устойчивость к цефотаксиму). Оставшиеся 18 путей очень сильно различаются по вероятности своей реализации. Расчеты показали, что в 99% случаев эволюция "выберет" один из 10, а в 50% случаев — один из двух наиболее вероятных путей.

Вполне возможно, что это правило распространяется и на эволюцию других белков. Это значит, что молекулярной эволюции свойственны высокие повторяемость и предсказуемость. Разные организмы должны независимо друг от друга двигаться по одним и тем же "разрешенным" эволюционным траекториям. Не исключено, что аналогичные ограничения могут направлять и канализировать дарвиновскую эволюцию и на более высоких уровнях организации живого.

Приключения Protozoon (модель возникновения сложного организма из простого)

Попробуем понять, как же все-таки в ходе эволюции сложное может рождаться из простого. Для этого я хочу предложить вниманию читателей забавную мысленную модель.

Героем нашего повествования будет вымышленное, но довольно правдоподобное одноклеточное существо Protozoon, имеющее вполне обычный жизненный цикл, всего один "орган" — глазок — и всего один внутренний регуляторный фактор (сигнальное вещество X) с двумя эффектами. Это незамысловатое простейшее, как мы увидим, в результате одной- единственной случайной мутации автоматически может дать начало целому вееру сложных многоклеточных форм со своими онтогенезами (способами индивидуального развития), жизненными циклами, разделением тела на вегетативную и генеративную части ("сому" — тело и "герму" — половые клетки).

Итак, прошу познакомиться: Protozoon, диплоидный (т.е. имеющий двойной набор хромосом. Таковы все клетки животных, кроме половых. Половые клетки имеют одинарный набор хромосом и называются гаплоидными. У растений и простейших встречаются различные варианты чередования гаплоидных и диплоидных стадий в жизненном цикле. Прокариоты гаплоидны) одноклеточный эукариотический организм с простым жизненным циклом. В благоприятных условиях у зиготы (диплоидной клетки, образовавшейся при слиянии двух гаплоидных половых клеток) образуется глазок. Глазок стимулирует выработку сигнального вещества X.

Назад Дальше