Очень важно помнить, что геном работает не на уровне организма, а на уровне клетки. По сути дела он реально кодирует лишь биохимию и поведение одной клетки. Никакой "программы развития организма" в оплодотворенном яйце нет: там есть программа поведения клетки, не более. Что же касается "программы развития", то она самозарождается из взаимодействия делящихся клеток уже в ходе самого развития (примерно так же, как это происходит у Protozoon).
Развитие червей начинается с хвоста. Нематода (круглый червь) Caenorhabditis elegans — замечательный модельный объект для изучения индивидуального развития животных, равно как и для многих других исследований. Достаточно сказать, что в 2002 году Сиднею Бреннеру, который первым начал использовать этого крошечного червя в качестве модельного объекта в генетике и эмбриологии, была присуждена Нобелевская премия "за открытия в области генетического регулирования развития человеческих органов". Работа, конечно, проводилась на черве, но выводы оказались справедливыми и для человека — вот вам и еще одно доказательство генетического единства животного царства.
Генетики и эмбриологи выявили целый ряд генов, влияющих на развитие червя, причем многие из этих генов имеются также и у других животных, включая человека. Как мы уже знаем, система генетической регуляции развития, включающая Hох-гены и ряд других генов-регуляторов, в общих чертах сходна у всех животных. Однако ученые пока еще очень далеки от полного понимания тех удивительных механизмов, которые заставляют дробящееся яйцо превращаться не в комок клеток, а в сложно и тонко организованное многоклеточное существо.
Червь Caenorhabditis elegans — любимец генетиков и эмбриологов. Одно из главных достоинств С. elegans — прозрачность. Под микроскопом хорошо видны на просвет все внутренние органы и даже отдельные клетки. Чтобы увидеть во всех подробностях, как из оплодотворенной яйцеклетки развивается червячок с пищеварительной и нервной системами, мускулатурой, органами размножения, достаточно просто положить яйцо С. elegans на предметный столик микроскопа и наблюдать за ним в течение 14 часов — именно столько продолжается эмбриональное развитие этого животного.
Генетический анализ позволяет лишь выявить гены, необходимые (но вовсе не обязательно достаточные) для тех или иных аспектов дифференцировки клеток. Например, мутации Нох-генов могут приводить к причудливому перемешиванию признаков, характерных для разных отделов тела (на голове дрозофилы могут вырасти ноги, на заднем сегменте груди — дополнительная пара крыльев). Известны гены, мутации в которых приводят к полному нарушению процессов клеточной дифференцировки, так что вместо нормального эмбриона действительно образуется бесструктурный комок клеток. Но чтобы понять, как все эти гены вместе руководят развитием, необходимы эмбриологические эксперименты.
С. elegans — идеальный объект для таких исследований. Развитие этого червя прослежено во всех деталях — от оплодотворенного яйца до взрослого организма. В точности известна судьба каждой зародышевой клетки (бластомера); известно, из какого бластомера образуется каждая из клеток взрослого червя. Надо сказать, что развитие круглых червей, в отличие от многих других животных, очень строго определено с самого начала. Даже на стадии двухклеточного эмбриона его бластомеры отнюдь не одинаковы. Разделив их, мы не получим близнецов, как это бывает у позвоночных. Более крупный передний бластомер АВ дает большую часть тела, мускулатуру, нервную систему; задний бластомер P1 — меньшую часть тела, включая половые органы и кишечник. Таким образом, судьба этих бластомеров известна уже на двухклеточной стадии. Она предопределена изначальной полярностью яйцеклетки: одному бластомеру достается больше каких-то регуляторных (сигнальных) веществ, другому меньше.
При этом, однако, бластомеры вовсе не являются замкнутыми системами, изначально запрограммированными на какой-то определенный путь развития. Они не могут правильно развиваться без контакта с другими бластомерами; они обмениваются между собой разнообразными химическими сигналами, корректируя свое поведение в соответствии с переменами в клеточном окружении.
Маркус Бишофф и Ральф Шнабель из Института генетики Технического университета в Брауншвейге задались целью выяснить, какой механизм отвечает за придание эмбриону передне-задней полярности. В экспериментах им чрезвычайно помогло то обстоятельство, что с ранними эмбрионами С. elegans можно обращаться как с миниатюрным живым конструктором. Бластомеры можно разделять и перекомбинировать произвольным образом и даже составлять химерные эмбрионы из клеток разных особей. До взрослого червя такие конструкции, как правило, дорасти не могут, но все-таки умирают не сразу и некоторое время развиваются.
Исследователи отделили у четырехклеточных эмбрионов две передние клетки ("дочки" бластомера АВ), из которых в норме должен развиться почти весь червяк. Лишенные контакта с задними бластомерами ("дочками" бластомера P1, которые называются EMS и Р2), эти клетки делились хаотически и превращались в аморфный комок без всяких признаков передне-задней полярности.
Естественно было предположить, что задние бластомеры выделяют какое-то сигнальное вещество, упорядочивающее деление передних клеток. Так оно и оказалось. "Поляризующим центром" зародыша, как показали эксперименты, служит бластомер P2 (из него впоследствии развивается половая система). Достаточно приложить клетку P2 к потомкам АВ хотя бы на пять минут, чтобы клетки "поляризовались". После этого потомки АВ делятся не случайным образом, а преимущественно в определенной плоскости, так что в результате из них получается не комок, а удлиненный червеобразный зародыш с выраженным передним и задним концом. Задним концом всегда становится та точка, к которой прикоснулась клетка Р2.
Зародыш С. elegans на стадии 8 клеток.
Очевидно, сигнальное вещество, выделяемое клеткой P2, влияет на ориентацию плоскости деления у дробящихся бластомеров. Сила этого вещества такова, что, прикладывая к клеткам два Р2-бластомера в разных местах, ученые получали причудливых монстров с двумя хвостами или L-образно изогнутые зародыши с двумя взаимно перпендикулярными передне-задними осями. Каждая точка контакта с Р2 превращалась в хвост!
Теперь надо было выяснить, что это за вещество. Ранее было установлено, что на ориентацию плоскости деления клеток оказывает влияние сигнальный белок Wnt, один из важнейших многофункциональных регуляторов развития у животных. Этот белок в иерархии регуляторов стоит в некотором смысле даже выше Нох-генов. Одни клетки выделяют белок Wnt, другие воспринимают его при помощи специальных белков-рецепторов, и это приводит к активизации других генов-регуляторов, в том числе Нох-генов.
Чтобы проверить, действительно ли бластомер Р2 поляризует остальные бластомеры при помощи белка Wnt, исследователи использовали мутантные Р2-бластомеры с выключенным геном Wnt. Оказалось, что такие Р2-бластомеры поляризующим действием не обладают. Таким образом, природа сигнала была установлена.
Оставалось понять, каким образом сигнал передается от одних клеток к другим. Исследователи обнаружили, что клетки, "поляризованные" Р2-бластомером, сами приобретают способность поляризовать другие клетки. Однако если у них выключен ген Wnt, этого не происходит. Из этого авторы сделали вывод, что передача сигнала происходит не путем диффузии сигнального вещества, производимого Р2-бластомером, из клетки в клетку (как у модельного существа Protozoon из прошлой главы), а по принципу эстафеты. Поляризованные клетки сами начинают производить белок Wnt и таким образом поляризуют своих соседей.
Дополнительные эксперименты показали, что оставшаяся часть зародыша (та, что получается из бластомера EMS) тоже поляризуется благодаря контакту с Р2. Таким образом, бластомер Р2 оказался главным организующим центром развивающегося зародыша, определяющим его передне-заднюю полярность. Это важное открытие германских эмбриологов, а также разработанные ими методики сложных манипуляций с бластомерами открывают новые захватывающие перспективы перед учеными, стремящимися проникнуть в тайну развития животных.
Данная работа очень наглядно показывает, каким образом довольно простые системы химического "общения" между клетками зародыша позволяют им "самоорганизоваться" в сложный многоклеточный организм.
Данная работа очень наглядно показывает, каким образом довольно простые системы химического "общения" между клетками зародыша позволяют им "самоорганизоваться" в сложный многоклеточный организм.
(Источник: Marcus Bischoff, Ralf Schnabel. A Posterior Centre Establishes and Maintains Polarity of the Caenorhabditis elegans Embryo by a Wnt-Dependent Relay Mechanism // PLoS Biology. 2006.4(12): е395.)
Нужны ли эмбрионам гены?
Имеется еще одно странное обстоятельство, затрудняющее понимание природы индивидуального развития животных. Оно состоит в том, что ранние этапы онтогенеза, как правило, идут вообще без участия генов, при полностью отключенном геноме.
Задумаемся, что это значит. Ведь принято считать, что индивидуальное развитие — это постепенная "реализация" той генетической информации, которая заключена в геноме оплодотворенной яйцеклетки (зиготы) и которая в итоге окончательно "воплощается" в строении взрослого организма. Все понимают, что путь от генотипа к фенотипу труден и извилист, но лишь немногие эволюционисты всерьез пытаются объяснить ключевые закономерности эволюции особенностями тех сложнейших процессов самоорганизации, которые составляют суть онтогенеза (уж слишком трудна задача). Поэтому обычно проблему пытаются упростить, сведя все к вопросу о том, каким образом те или иные изменения генотипа (например, мутации) могут отразиться на процессе развития зародыша.
Геном традиционно рассматривается как активное начало (в нем все "закодировано", он "руководит" развитием). Развивающийся зародыш, напротив, считается чем-то вроде пассивного "результата" деятельности генома. Дело несколько осложняется тем, что сам геном в процессе онтогенеза явно не самодостаточен: в разных клетках эмбриона одни гены включаются, другие выключаются в строгой последовательности, определяемой, в частности, химическими сигналами, которыми обмениваются между собой клетки и ткани зародыша. Кто кем управляет, становится не совсем ясно. Некоторые теоретики по этому поводу даже заявляют, что геном — это не "программа развития зародыша", а скорее некий набор инструментов, которыми зародыш пользуется (или не пользуется) по своему усмотрению.
Делящаяся яйцеклетка (слева наверху), морула в виде комка клеток (слева внизу), бластула в виде полого шарика (справа внизу и вверху). На всех этих стадиях развития животных геном обычно не функционирует. На рисунке — развитие медузы Aequorea.
Для управления собственными генами зародыш использует множество разных механизмов: это и регуляция транскрипции (считывания генов) при помощи малых РНК и специальных регуляторных белков — транскрипционных факторов {Нох-гены, как мы помним, тоже кодируют транскрипционные факторы), и особые "эпигенетические" механизмы, о которых мы подробнее поговорим в главе 8.
Еще одно обстоятельство, которое делает сомнительным тезис о полной и однозначной обусловленности онтогенеза геномом зиготы, состоит в том, что, как уже было сказано выше, у подавляющего большинства животных на ранних стадиях развития геном вообще не функционирует. Он просто-напросто отключен, все гены молчат и матричные РНК ("считываемые" с генов матрицы для синтеза белка) не производятся.
Типичная гаструла многоклеточного животного, а — эктодерма (наружный зародышевый листок), б — бластоцель (первичная полость тела) у в — первичная кишка, г — энтодерма (внутренний зародышевый листок), д — бластопор (первичный рот).
Зародыш между тем претерпевает сложные превращения. Яйцеклетка начинает дробиться, число клеток эмбриона растет в геометрической прогрессии: 2, 4, 8, 16, 32... Наконец формируется однослойный шар из клеток (бластула). Клетки, находящиеся на одном из полюсов бластулы, мигрируют внутрь, давая начало второму зародышевому листку (энтодерме), из которой позже разовьется кишечник. На этой стадии двуслойный зародыш называется гаструлой. Только на этом этапе у многих животных начинают наконец включаться гены, унаследованные от папы с мамой. У других это происходит чуть раньше — на стадии бластулы. И только млекопитающие — группа, уникальная во многих отношениях, — включают свои гены еще раньше (например, мышь делает это на стадии двух клеток) (Другая уникальная особенность млекопитающих — мощное развитие "геномного импринтинга", механизма, при помощи которого родители целенаправленно влияют на наследственные свойства эмбриона, отчасти — в своих собственных корыстных интересах (см. главу 8). Вполне возможно, что между этими двумя особенностями существует связь. Родители могут быть заинтересованы в том, чтобы "отредактированные" ими гены зародыша включились пораньше).
Как удается эмбриону развиваться без всякого "генетического контроля" вплоть до стадии гаструлы? Почему гены зародыша так долго остаются выключенными? Какие механизмы обеспечивают отключение генов в зиготе, а затем их своевременное включение (Последующий текст данного раздела основан на статье: Alexander F. Schier The maternal-zigotic transition: death and birth of RNAs // Science. 2007. v.316. p.406-407.)?
Ответ на первый вопрос более или менее ясен. Яйцеклетка содержит большое количество матричных РНК, унаследованных от материнского организма. Эти мРНК считываются с материнских генов заблаговременно, в процессе созревания яйцеклетки. Именно они обеспечивают синтез белков, необходимых для ранних стадий онтогенеза. В определенный момент материнские мРНК начинают уничтожаться. Это происходит как раз тогда, когда зародыш начинает сам производить мРНК, то есть включает свои гены. Этот довольно быстрый процесс замены зародышем материнских мРНК на свои собственные называется maternal- zygotic transition (MZT).
Менее ясен вопрос о том, что движет процессом MZT. Предполагается три возможных механизма. 1. По мере роста числа клеток, из которых состоит зародыш, начинает сказываться нехватка тех веществ (что бы они из себя ни представляли), которые не позволяют генам зародыша включиться. Ранние стадии эмбриогенеза животных не случайно называют "дроблением": зигота именно дробится, клетки эмбриона после каждого деления становятся все мельче, поскольку между клеточными делениями отсутствует стадия роста клеток. Общее количество цитоплазмы не растет, тогда как количество клеточных ядер, а следовательно и ДНК, увеличивается в геометрической прогрессии. Если предположить, что яйцеклетка заранее запаслась какими-то ингибиторами транскрипции, то количество этих гипотетических ингибиторов, приходящихся на каждую клетку, должно быстро убывать, и в конце концов их остается так мало, что они уже не могут сдерживать транскрипцию.
2. Не исключено, что в зиготе изначально имеет место целенаправленное блокирование некоторых ключевых генов, работа которых инициирует транскрипцию. Так, показано, что искусственное введение в эмбрион мощных активаторов транскрипции (транскрипционных факторов "широкого спектра действия") может вызвать преждевременное частичное включение эмбрионального генома.
3. Наконец, сама по себе быстрая череда клеточных делений может мешать транскрипции. Ведь каждому делению должно предшествовать удвоение ДНК (репликация). В ходе дробления репликация должна происходить по сути дела непрерывно. Между тем известно, что репликация может мешать транскрипции, а во время клеточного деления (митоза) могут происходить обрыв и уничтожение тех мРНК, синтез которых еще не закончился. Может быть, клетки эмбриона просто физически не успевают транскрибировать свои гены? Искусственное замедление процесса дробления действительно может вызвать преждевременное включение эмбрионального генома. Кстати, у млекопитающих дробление протекает сравнительно медленно, не этим ли объясняется раннее включение генов зародыша?
Впрочем, ни одна из этих теорий не объясняет всей совокупности имеющихся фактов. Например, они не могут объяснить, почему эмбриональные гены включаются не все сразу, а постепенно, в строго определенном порядке.
Вторым существенным аспектом MZT является уничтожение материнских мРНК. Тут, как выяснилось, все предусмотрено заранее: материнские мРНК помечены особой последовательностью нуклеотидов, расположенной на нетранслируемом (то есть не кодирующем белок) "хвостике" этих молекул. Среди первых генов, которые эмбрион включает в процессе MZT, находятся гены особых белков и маленьких РНК, которые распознают эту последовательность, прикрепляются к ней и тем самым инициируют уничтожение материнских мРНК.
До полного понимания всех этих процессов науке еще очень далеко, но дело движется. Когда основные механизмы генной регуляции в ходе раннего онтогенеза будут расшифрованы, биологи смогут вплотную заняться следующим принципиальным вопросом, а именно — зачем все это надо? Почему животные не доверяют своему геному контроль над ранними стадиями развития, а потом в какой-то момент вдруг "переключаются" с материнских мРНК на свои собственные?