ШКОЛЬНАЯ
Космогония детям, часть 4 (СИ)
Антон Виноградов и Мария Виноградова
РОЖДЕНИЕ ВЕЩЕСТВА И НЕБЕСНЫХ ТЕЛ
Раздел 4
1. Земные доказательства принадлежности Солнца к типичным вспыхивающим звёздам.
2. Геологический календарь фиксирования этапов солнечного синтеза.
3. Особенности периодической системы солнечного синтеза.
1. Земные доказательства принадлежности Солнца к типичным вспыхивающим звёздам.
Дорогие друзья!
Прежде всего, очень важно представить себе, что вспышка звезды – это очень яркое событие в жизни любой звёздно-планетной системы. И оно не может пройти незаметно для других членов звёздно-планетного семейства. Это понимают даже гуманитарные писатели, далёкие от проблем космогонии. Например, А.И. Солженицын вложил в уста одного из своих героев произведения «В круге первом» о событиях 1949 года такие слова: «А ты знаешь, что Солнце – новая звезда, значит, можем погибнуть от катастрофы?». Какая верная мысль, что вспышка дневной звезды – это неминуемая катастрофа! Но вспышка звезды – это и выброс её оболочки, и об этом знают даже поэты, особо тонко чувствующие реальность происходящего. В стихотворении «Космос смерти поэта» Виктора Тена поражает космический масштаб земных событий: « то ли смерть, то ли сброс большой красной звезды…» («Пред вечностью», 1999 год). А у нас звезда даже не красная спектрального класса М, а жёлтая класса G, а значит ещё более горячая и энергичная. А были ли катастрофы на ближайших к Солнцу небесных телах? О том, что они были, - геологи знают. Например, Милановский Е.Е. и Никишин А.М. фиксируют катастрофический «характер мегациклов эволюции Земли, Марса и Луны». Но, к сожалению, не все связывают периодические земные катастрофы с закономерными вспышками Солнца. И вот в 1986 году, то есть 28 лет назад, основатель Новой космогонии геолог А.Е. Ходьков заявил об этих катастрофах как о закономерности, в статье, опубликованной в «Вестнике Ленинградского государственного университета». Она называлась : « О термоударных воздействиях взрывной волны Солнца на Землю как важнейших факторах развития Земли, земной коры (литосферы)». Среди закономерных катастроф Ходьковым особо выделяются две глобальные: на рубеже 1,9 и 2 миллиардов лет назад и последняя 220 миллионов лет назад. Эта ближайшая к нам по возрасту катастрофа сильнейшим образом изменила лик Земли: удар пришёлся на Тихоокеанский сегмент и вырыл (обновил) огромную Тихоокеанскую впадину, так что окраины Тихого океана до сих пор страдают от его разрушительных последствий: извержений вулканов и землетрясений. Примером является участь Японии. Эта катастрофа носит название Тихоокеанского или Киммерийского диастрофизма. Во время этой катастрофы погибло 90% всего живого на Земле. Так как удар попал в основном на западное полушарие Земли, то именно там и обнаруживаются следы катастрофической гибели животных. Газета «Известия» № 55 от 24 февраля 1986 года опубликовала статью «Следы из прошлого». Национальное географическое общество США в Вашингтоне сообщило об уникальной находке в заливе Фанди – кладбища из 100 тысяч костей внезапно погибших животных, живших более 200 миллионов лет назад, что навело учёных на мысль о крупнейшей природной катастрофе планетарного масштаба.
Ну а теперь следует показать закономерность и неизбежность таких планетарных катастроф под боком у действующей звезды Главной звёздной последовательности, которая до 10 раз в своей жизни вспыхивает как «новая». Об этом, кстати, очень здорово сказал астроном И.С. Шкловский: «Ядерные процессы играют фундаментальную роль в длительной, спокойной эволюции звёзд, находящихся на Главной последовательности. Но, кроме того, их роль является определяющей для быстропротекающих нестационарных процессов взрывного характера, являющихся поворотными этапами в эволюции звёзд!»
Ретроспективный взгляд на геологическое развитие Земли позволит основные геохронологические циклы, классифицированные по мощности разрушений, объяснить влиянием циклических процессов в солнечных оболочках для разных по значимости этапов синтеза.
2. Геологический календарь фиксирования этапов солнечного синтеза.
Теперь остаётся только проанализировать цикличность земных катастроф, оставивших свои следы в земной коре в виде так называемых диастрофизмов. А что такое диастрофизм? Это оставшийся след тектонической перестройки земной коры в результате сильнейшего внешнего воздействия. В чём заключается тектоническая перестройка? В сильнейших расколах и расползании земной коры, в глобальном расплавлении земных пород, в выбросах гидросферы с изменением уровня мирового океана. Цикличность земных катастроф помогает составить подходящий календарь для фиксирования поворотных этапов в эволюции Солнца – этапов его синтезирующей деятельности. Таким календарём-летописью станет для нас стратиграфическая шкала диастрофических циклов в течение геологической истории. Она поможет нам восстановить канву периодичности солнечного синтеза. Датировки окончания периодов элементов дадут возраст солнечных производных детищ, о которых мы уже кое-что знаем из предыдущих разделов Школьной космогонии.
Начнём с самых крупных циклов изменения геологического режима земной коры: крупнейший цикл 1736 миллионов лет между глобальными катастрофами есть отражение длительности самого крупного цикла синтеза – им является период из двух рядов, так как крупнее цикла в синтезирующей деятельности звезды просто нет. Таких периодов два. Они разграничены сильнейшими, мощнейшими глобальными диастрофизмами первого порядка Саамским, Карельским и Киммерийским. Смотрим на иллюстрацию 1 с графиком, где по вертикали обозначены диастрофизмы, а по горизонтали моменты их возникновения в течение жизни земной коры от 4 миллиарднолетней давности до настоящего времени. Эти крупнейшие циклы содержат по 8 ступеней изменения геологического режима.
Иллюстрация 3.
Фактически самая мелкая цикличность фиксирует длительность наращивания слоя из структур достигнутого усложнения атома, по достижении которого создаются условия для большего усложнения.
Сначала наращивается слой из двухдипольных структур, затем из четырёхдипольных, далее из шести- и потом из восьмидипольных. Всего в солнечном синтезе прослеживается 4 этапа роста атомной структуры. Последний элементный цикл в 217 миллионов лет начался с этапа 35 миллионов и закончился последним 56. Это значит, что цикл начинается с единичного события длительностью 35 миллионов лет присоединения единичного диполя, а за ним следуют три пары удвоенных длительностей: 2х28, 2х35 и 2х28 присоединения трёх пар диполей.