Микросателлиты, состоящие из двух пар нуклеотидов (динуклеотидные повторы), занимают около 0,5% генома человека. Наиболее частыми динуклеотидами являются АЦ и АТ (50 и 35% всех динуклеотидов, соответственно). А вот динуклеотидный повтор, состоящий из пары ГЦ, в ДНКовом тексте человека занимает всего лишь 0,1%. Наиболее частые из более «сложных» микросателлитов (тринуклеотидных повторов) являются ААТ (33% от всех тринуклеотидных повторов) и ААЦ (21%). Триплет ЦГГ, который довольно редок в геноме, присутствует в гене FMR–1, определяющем синдром ломкости X-хромосомы. У нормальных людей число копий ЦГГ в гене варьирует от 6 до 54. А вот у больных индивидуумов такие триплеты «размножаются» и их число в гене может достигать 200–1300 копий. Подробнее о связи между сателлитными повторами и различными заболеваниями человека мы еще поговорим далее. Но остается загадкой: зачем такие нуклеотидные последовательности вообще нужны геному.
Выше приведенный пример и множество других случаев указывают на то, что микро-и минисателлиты весьма изменчивы, т. е., как говорят, полиморфны. Их распределение и число в геноме каждого конкретного человека столь специфично, что может использоваться в качестве аналога отпечатков пальцев. Как только это было обнаружено, этим фактом сразу воспользовались. В настоящее время ненужная вроде бы фракция генома человека (а на самом деле возможно и нужная, но мы просто о ней мало что знаем) стала востребована человеком для своих практических целей. На основании вариабельности сателлитных ДНК была развита диагностика родственных связей между людьми, склонности человека к различным заболеваниям и др. (см. об этом подробнее далее в разделе о геномной дактилоскопии).
И, наконец, еще один вид сателлитной ДНК был обнаружен при секвенировании генома человека, который получил название мегасателлитов. Эти тандемные повторы имеют размер от 2,5 до 5 тыс. п. н. и повторяются от 50 до 400 раз. Мегасателлиты присутствуют лишь в небольшом числе хромосом (в 4, 8, 19 и X).
Диспергированные повторы
В ДНКовом тексте генома человека содержится множество более длинных повторяющихся нуклеотидных последовательностей, которые в отличие от сателлитных повторов рассеяны (диспергированы) по всему геному. Эти повторы называют вездесущими, так как они присутствуют во всех районах всех хромосом, а иногда обнаруживаются даже и внутри генов. В сумме около половины ДНКового текста генома человека представлено такими повторами.
Исследователи разделяют эти разбросанные по геному (диспергированные) повторы на четыре основных типа. Наиболее представленными в геноме являются длинные диспергированные повторы (сокращенно ДДП). Их длина достигает 6 тыс. п. н., а повторяются они в геноме человека примерно 8,5х105 раз (в сумме ДДП составляют около 21% генома). Далее — это короткие диспергированные повторы (сокращенно КДП) длиной 100–400 п. н. В ДНК человека содержится примерно 1,5х106 копий КДП (это составляет около 13% генома). Имеются еще повторяющиеся элементы, окруженные с двух сторон дополнительными повторами (последние называют длинными концевыми повторами). Их назвали ретротранспозонами. (Как появилось такое сложное название, будет ясно из дальнейшего изложения). Длина этих повторов варьирует от 1,5 до 11 тыс. п. н., а общее число копий в ДНК человека составляет около 4,5х105, (8% генома). Наконец, в геноме человека присутстуют повторы, названные ДНК-транспозонами. Длины разных ДНК-транспозонов существенно отличаются (от 80 до 3000 п. н.). В геноме их меньше, чем других повторов (всего 3%), а общее число составляет 3х105.
Более подробно о структуре и характерных особенностях этих типов повторов мы поговорим далее в связи с одной чрезвычайно важной их особенностью — способностью перемещаться в геноме. Здесь же отметим, что имеется большое различие в распределении всех этих диспергированных повторов вдоль молекул ДНК. Хотя повторы имеются во всех участках хромосом, некоторые места почему-то сильно заселены ими, а другие, наоборот, практически их не содержат. Так, область размером 525 тыс. п.н. в хромосоме 11 на 89% состоит из таких повторяющихся элементов. А вот в хромосоме 2 имеется участок ДНК размером 100 тыс. п.н., в котором расположены кластеры генов некого семейства HOX, ответственных за процессы развития при эмбриогенезе, и который содержит всего около 2% рассеянных повторов. Однозначного объяснения этому нет, можно строить только разные предположения. Например, в случае с блоком генов HOX отсутствие здесь повторов, возможно, связано с очень сложной координированной регуляцией в этой области, а наличие бесполезных повторов могло бы нарушить такую регуляцию.
Диспергированные повторы умеют «прыгать»
В соответствии с законами классической генетики ожидалось, что в геноме все должно быть четко размечено, все гены-предложения должны располагаться в строго определенных местах текста. И большинство элементов генома действительно подчиняется этому общему правилу. Но из общего правила всегда есть исключения. Оказалось, что некоторые участки ДНК могут «путешествовать», меняя свое место, вытесняя друг друга. Подавляющее большинство генов никогда не покидают родную хромосому. Но в отличие от них определенные специфические нуклеотидные последовательности ДНК изредка с корнем вырываются из генома, выпрыгивают из одной хромосомы и приземляются в случайном месте на другой. При этом они могут влезть в середину гена, вызывая хаос, а могут примкнуть с края, слегка видоизменяя его регуляцию.
Впервые данное явление обнаружила у растений американская исследовательница Барбара Мак-Клинток еще в конце 30-х годов. Но очень долгое время ей никто не верил, исходя из общего принципа: «этого не может быть, поскольку не может быть никогда». Генетикам трудно было даже представить, чтобы гены прыгали с места на место, «ломая» наследственную информацию. Маститые ученые, если речь заходила о Мак-Клинток, с иронией приводили «прыгающие гены», «скачущие гены» как пример научной торопливости, некритического отношения к собственным результатам, стремления прославиться. Но прошло время и российские ученые (академик Г. П. Георгиев и член-корреспондент В. А. Гвоздев) обнаружили перемещения некоторых участков и в ДНК животного организма (дрозофилы). В конечном итоге научная общественность воздала Мак-Клинток должное. Она дождалась своего звездного часа и получила за свое открытие под конец своей жизни Нобелевскую премию (1983 г.).
Таким образом, было установлено, что отдельные участки генома высших организмов, подобно некоторым индивидуумам в нашем обществе, могут не хотеть жить по общим правилам. Их мало интересует постоянная прописка, и при определенной ситуации они берут и просто «переезжают» в любое заинтересовавшее их по каким-то причинам место или, как говорят, «перепрыгивают» в иные, видимо, более удобные для них районы ДНК. Другими словами, стало ясно, что геном не так уж и стабилен, законсервирован, как он казался многим исследователям до этого.
У человека возможность перестроек в геноме впервые была продемонстрирована при изучении генов иммуноглобулинов, связанных непосредственно с иммунной системой организма. Оказалось, что в процессе индивидуального развития в лимфоцитах (белые кровяные шарики) происходит перетасовка отдельных участков этих генов, в результате чего и формируются тысячи и даже миллионы новых вариантов иммуноглобулинов-антител, убивающих многочисленные чужеродные вмешательства различных живых агентов в человеческий организм. Это позволяет за счет сравнительно небольшого набора исходных генов обеспечивать образование огромного разнообразия всесторонне направленных иммуноглобулинов. Другие хорошо известные гены никогда не «прыгают». Такая ситуация оказалась уникальной именно для иммуноглобулиновых генов. Основное перемещение в геноме человека осуществляют не гены, а элементы совершенно другого типа, получившие название транспозонов. К ним относят различные элементы, входящие во все четыре выше перечисленных основных типа диспергированных повторов генома. Транспозоны способны к разным инновациям в геноме. Перемещаясь, они могут изменять регуляцию других генов и даже принимать участие в создании новых генов. Так, после полного секвенирования генома человека в нем удалось обнаружить около пятидесяти генов, произошедших из транспозонов. Несколько сотен генов в геноме человека используют длинные концевые повторы транспозонов в качестве терминаторов при транскрипции.
Теперь рассмотрим по отдельности структурные особенности разных семейств этих «прыгающих» время от времени элементов генома человека.
Семейство повторов по имени LINE
Как среди населения земли имеются многочисленные нации и меньшинства, так и в геноме одни повторы редки, а другие представлены большим числом копий. Основной представитель длинных диспергированных повторов генома человека — семейство повторов, получившее имя LINE (сокращенно от англ. long interspersed elements). Отличительная особенность этих повторов заключается в том, что они способны кодировать два белка-фермента, которые и принимают участие в перемещении их самих, а заодно они способны обеспечивать «перепрыгивание» и коротких диспергированных повторов (КДП). Это осуществляется главным образом за счет уже упоминавшегося фермента ревертазы. РНК, образующиеся после транскрипции LINE-повторов, превращаются в ДНК-копии, которые и встраиваются в новые места генома. В процессе синтеза ДНК-копии на РНК иногда происходит преждевременная остановка этого процесса, поэтому в геноме человека наряду с «полноразмерными» ДДП присутствуют элементы укороченной длины. Ферменты, кодируемые LINE-повторами, участвуют и в процессе появления в геноме некоторых псевдогенов, т. е. генов, которые вообще не способны функционировать. Но, как оказалось, не только их. Сейчас уже известно с десяток нормально функционирующих генов, которые возникли за счет обратной транскрипции мРНК. Такие гены, конечно же, не содержат интронов (их называют безинтронными).
Итак, в геноме человека источником активной ревертазы являются, по-видимому, ретротранспозоны L1, число копий которых достигает 100 тыс. Однако реально число активных перемещающихся копий составляет всего 30–60 тыс., тогда как остальные настолько повреждены, что не транскрибируются и, следовательно, уже не могут перемещаться.
Семейство повторов по имени Alu
Основную массу коротких диспергированных повторов (КДП) составляют так называемые Alu-повторы, которые занимают в ДНКовом тексте генома человека почти в 10 раз больше места, чем все последовательности, кодирующие белки. Свое название они получили по имени рестриктазы, для которой у них имеется определенный сайт. В сумме в геноме насчитывают около одного миллиона Alu-повторов. Такое их огромное количество не поддается нашему пониманию. Для чего они нужны? Ведь это относительно короткие повторы (около 300 п. н.), которые не способны кодировать никакие белки. Более того, разные члены семейства Alu-повторов не полностью похожи друг на друга, хотя родство между ними прослеживается однозначно (в среднем последовательности двух любых Alu-повторов сходны на 85%). Считается, что этот вид повторов появился в ходе эволюции у приматов (и только у них) свыше 65 млн. лет назад. Попав в геном человека, Alu чудовищно размножились и причудливо расселились по разным хромосомам, то скапливаясь в некоторых местах, то перемежаясь с генами или даже влезая в некоторые из них. В частности, Alu-повторы нередко присутствуют в тех районах генов, которые транскрибируются при образовании мРНК, но не транслируются при синтезе белка. При этом, как число, так и расположение Alu-повторов в геноме может заметно отличаться у разных индивидуумов.
Большинство из диспергированных повторяющихся элементов ДНКового текста обладают способностью к перемещению в геноме. Свидетельства этому «перепрыгиванию» были получены, в частности, при сравнительных исследованиях структуры отдельных районов генома у человека и других близкородственных приматов. Более того, и сейчас продолжается время от времени регистрация перемещения отдельных повторов. Так, установлено, что Alu-повторы изредка встречаются у некоторых людей в тех местах генома, где у большинства других их нет. Один из таких ярких примеров — обнаружение внедрения Alu-повтора в ген фактора свертываемости крови VIII при такой патологии, как гемофилия А.
Итак, геном — это не застывшая ДНК, а динамическая структура, чем-то напоминающая атом. Последний имеет не только стабильное ядро, но и целый рой перемещающихся вокруг его элементов (в частности, электронов). Именно поэтому академик Г. П. Георгиев справедливо отметил, что «ген постоянен в своем непостоянстве»!
Стоит сразу оговориться, что перемещение транспозонов происходит крайне редко. Тем не менее его значимость для генома человека весьма велика и определяется, по-видимому, тем, что этот процесс продолжается безостановочно на протяжении многих тысячелетий. Можно думать, что в результате этого подвижные или мобильные элементы способны в ходе эволюции заметно «тасовать» текст Энциклопедии человека подобно тому, как игроки тасуют колоду карт.
Перечень подвижных элементов генома не ограничивается различными описанными выше диспергированными повторами. К таковым относятся и некоторые элементы, доставшиеся нам в ходе эволюции от таких простейших организмов, как вирусы и бактерии.
Вирусы — составная часть генома человека
Незримая борьба между человеком и такими «внутриклеточными паразитами», как вирусы, происходила на протяжении тысячелетий. Только после обнаружения вирусов Д. И. Ивановским в 1892 году человечество наконец-то распознало своего невидимого врага, который, проникая в клетку человека, использует все ее возможности в своих корыстных целях, тем самым нарушает нормальный метаболизм клетки и вызывает различные тяжелые патологии. Ряд вирусов обладает способностью внедряться в геном человека и по сути становиться как бы его собственными генами. В первую очередь это относится к так называемым ретровирусам. Они так были названы по своему образу жизни. Исходно геном этих вирусов представляет собой РНК. Но, попав в клетку, вирус на своей РНК с помощью обратной транскриптазы строит ДНК-копию (см. основную догму молекулярной биологии). После этого ДНК-копия вируса встраивается в геном клетки, что служит обязательным условием для жизненного цикла ретровируса. Встраиваемая в геном клеток человека ДНК-копия вируса была названа провирусом. Затем на провирусе синтезируются вирусные РНК, на базе которых образуются новые вирусные частицы. Таков жизненный цикл обычного ретровируса. Так ведет себя, например, хорошо известный ретровирус, получивший название вируса иммунодефицита человека (ВИЧ), когда он инфицирует клетки крови.
Казалось, что все это есть проблема отдельных инфицированных клеток. И действительно, вирусы инфицируют в основном соматические клетки. Затем вирусы и провирусы погибают вместе с теми клетками, в которых они похозяйничали. Т. е. вирусы сами подготавливают и свою собственную смерть. Однако это не всегда так происходит. Очень редко в эволюции человека происходило инфицирование вирусами клеток зародышевого пути, образовывались провирусы, но организм выживал и внедренный провирус становился наследуемым элементом генома человека. Так в клетке появляется «лжепрограмма» (провирус), которая изменяет геном гораздо сильнее, чем это возможно при «нормальной» эволюционной изменчивости.
Когда секвенировали геном человека и многих других млекопитающих, оказалось, что в их составе содержится очень большое число повторяющихся элементов, имеющих сходство с инфекционными вирусами. Повторяющиеся элементы, способные кодировать 2–3 белка и окруженные с двух сторон еще одними особыми повторами — названными длинными концевыми повторами (ДКП), — были отнесены к семейству, получившему название ретротранспозонов. У человека они составляют довольно существенную часть — около 8% генома. Такие элементы назвают часто эндогенными ретровирусами, в отличие от типичных ретровирусов, существующих в природе вне организмов (их называют экзогенными ретровирусами). Структура типичного эндогенного ретровируса (провируса) изображена на рис. 27 на цветной вклейке. Она напоминает структуру отдельных современных экзогенных ретровирусов (на рисунке вверху), хотя часто существенно отличается от них. Все-таки за миллионы лет древним провирусам трудно было остаться неизменными. Большая часть этих элементов представляет собой дефектные вирусные последовательности или даже отдельные их короткие фрагменты. Происходило это главным образом за счет накопления точечных мутаций и различных делеций. В частности, у многих эндогенных ретровирусов отсутствует ген env. Концевые участки ретровирусов, названные длинными концевыми повторами (ДКП), нередко существуют в геноме человека сами по себе, оторвавшись от своего эндогенного ретровируса в ходе эволюции и собственного перемещения по геному.