Как не ошибаться. Сила математического мышления - Джордан Элленберг 7 стр.


Но на самом деле решение загадки с числом 0,999… (а также парадокса Зенона и ряда Гранди) кроется несколько глубже. Вы совсем не должны поддаваться давлению моих алгебраических доводов. Например, вы можете настаивать на том, что 0,999… равно не 1, а скорее 1 минус некое крохотное бесконечно малое число. Если уж на то пошло, вы можете настаивать и на том, что число 0,333… не равно в точности 1/3, а также отличается от этого числа на некую бесконечно малую величину. Для того чтобы довести данную мысль до конца, потребуется определенное упорство, но это можно сделать. Когда-то у меня был студент по имени Брайан, который изучал математический анализ. Не удовлетворившись теми определениями, которые давались на занятиях, Брайан сам разработал довольно большой фрагмент этой теории, назвав бесконечно малые величины числами Брайана.

На самом деле Брайан не был первым, кто решил заняться этим. Существует целая область математики под названием «нестандартный анализ», которая специализируется на изучении чисел такого рода. Теория, сформулированая Абрахамом Робинсоном в середине ХХ столетия, наконец позволила понять смысл «бесконечно малых приращений», которые Беркли считал такими нелепыми. Цена, которую придется за это заплатить (или, если посмотреть на это с другой стороны, награда, которую вы за это получите), – обилие новых типов чисел, причем не только бесконечно малых, но и бесконечно больших – огромное множество чисел всех форм и размеров[46].

Так случилось, что Брайану повезло – у меня в Принстонском университете был коллега Эдвард Нельсон, крупный специалист в области нестандартного анализа. Я устроил им встречу, с тем чтобы Брайан мог больше узнать об этой области. Впоследствии Эд рассказывал мне, что та встреча прошла не очень хорошо. Как только Эд дал понять, что на самом деле бесконечно малые величины никто не будет называть числами Брайана, Брайан полностью потерял интерес к этой области математики.

(Мораль: люди, начинающие заниматься математикой ради славы и признания, задерживаются в науке ненадолго.)

Но мы так и не приблизились к разрешению нашего спора. Что представляет собой число 0,999… на самом деле? Это 1? Или это некое число, на бесконечно малую величину меньшее 1, – число, принадлежащее к совершенно необычному классу чисел, который даже не был открыт сотню лет назад?

Правильный ответ состоит в том, чтобы вообще не задавать такого вопроса. Что представляет собой число 0,999… на самом деле? По всей вероятности, некую сумму такого рода:

0,9 + 0,09 + 0,009 + 0,0009 + …

Но что она значит? Настоящая проблема заключается в злополучном троеточии. Не может быть никаких споров по поводу того, что значит сумма двух, трех или сотни чисел. Перед нами всего лишь математическое обозначение физического процесса, который мы прекрасно понимаем: возьмите сотню куч чего угодно, смешайте их вместе и определите, сколько и чего у вас получилось. Но бесконечно большое количество? – это совсем другая история. В реальном мире вы не можете получить бесконечно большое количество множеств. Чему равно числовое значение бесконечной суммы? Его не существует – пока мы не зададим это значение. В чем и состояла новаторская идея Огюстена Луи Коши, который в 1820-х годах ввел в математический анализ понятие предела[47].

Лучше всего это объясняет Годфри Гарольд Харди в книге Divergent Series («Расходящиеся ряды»), опубликованной в 1949 году:

Это замечание сейчас тривиально: современному математику и не придет в голову, что какое-либо соединение математических символов может иметь «смысл» до того, как ему придан смысл с помощью определения. Но это не было тривиальностью даже для наиболее выдающихся математиков восемнадцатого века. Определения не были в их обычае; для них не было естественно говорить: «под X мы понимаем Y». С некоторыми оговорками… верно будет сказать, что математики до Коши спрашивали не «как определить 1 − 1 + 1 − 1 + …?», а «что есть 1 − 1 + 1 − 1 + …?»; и этот склад мышления приводил их к ненужным затруднениям и спорам, зачастую носившим, по существу, чисто словесный характер[48].

И это не просто непринужденный математический релятивизм. Тот факт, что мы можем придать какой угодно смысл той или иной последовательности математических символов, совсем не означает, что нам следует это делать. В математике, как и в жизни, есть как хороший, так и плохой выбор. В математическом контексте правильным считается выбор, позволяющий устранить ненужные затруднения, не создавая новых.

Чем больше членов ряда вы суммируете, тем ближе сумма 0,9 + 0,09 + 0,009 + … приближается к 1. И эта сумма никогда не превысит данное значение. Какое бы плотное оцепление мы ни устроили вокруг числа 1, в конце концов эта сумма после определенного конечного количества шагов пройдет сквозь него, но так и не выйдет наружу с другой стороны. По утверждению Коши, при таких обстоятельствах нам следует просто установить значение бесконечной суммы равным 1. Затем он приложил немало усилий, чтобы доказать, что установление такого значения не приводит к появлению глубоких противоречий где бы то ни было. К моменту окончания своей работы Коши создал понятийный аппарат, сделавшим исчисление Ньютона абсолютно строгим. Когда мы говорим, что в локальном масштабе под определенным углом кривая напоминает прямую линию, то под этим подразумевается примерно следующее: по мере увеличения масштаба эта кривая все больше напоминает прямую линию. В формулировке Коши нет необходимости ссылаться на бесконечно малые числа или любое другое понятие, которое заставило бы скептика побледнеть.

Разумеется, этому есть своя цена. Трудность задачи с числом 0,999… объясняется тем, что она вступает в конфликт с нашим внутренним чутьем. С одной стороны, нам хотелось бы, чтобы сумму бесконечного ряда можно было получить посредством арифметических манипуляций, подобных тем, которые представлены на предыдущих страницах, а в этом случае такая сумма должна быть равной 1. С другой стороны, мы желали бы, чтобы каждое число было представлено в виде уникальной цепочки десятичных цифр, что противоречит утверждению: одно и то же число можно назвать либо 1, либо 0,999… – как нам больше нравится. Мы не можем удовлетворить оба этих желания одновременно – от какого-то из двух придется отказаться. Согласно подходу Коши, который в полной мере доказал свою состоятельность за два столетия, прошедшие с тех пор, как он сформулировал этот подход, отбросить следует именно уникальность разложения на десятичные дроби. Нас не смущает тот факт, что в английском языке две разные цепочки букв (то есть два слова) порой используются для синонимичного обозначения одной и той же вещи; точно так же нет ничего плохого и в том, что разные последовательности цифр могут обозначать одно и то же число.

Что касается ряда Гранди 1 − 1 + 1 − 1 + …, он принадлежит к числу рядов, находящихся за пределами теории Коши; другими словами, это один из расходящихся рядов, о которых идет речь в книге Харди. Норвежский математик Нильс Хенрик Абель, один из первых сторонников подхода Коши, написал в 1828 году следующее: «Расходящиеся ряды – это изобретение дьявола, и постыдно основывать на них какое бы то ни было доказательство»[49]. В наше время мы придерживаемся именно точки зрения Харди. Она более терпима: существуют расходящиеся ряды, которым мы должны приписать какое-то значение, а также ряды, в случае которых нам не следует этого делать, – все зависит от контекста, в котором возникает тот или иной ряд. Современные математики сказали бы, что если нам необходимо присвоить какое-то значение ряду Гранди, то это должно быть 1/2, поскольку, как оказалось, все интересные теории, описывающие бесконечные суммы, либо присваивают этому ряду значение 1/2, либо (подобно теории Коши) вообще отказываются приписывать какое бы то ни было значение сумме этого ряда[50].

Чтобы записать точные определения Коши, потребуется приложить немного больше усилий. В частности, это касалось и самого Коши, который не составил достаточно четкого описания своих идей в том виде, в котором они известны в настоящее время[51]. (В математике редко бывает так, что автор идеи дает самое четкое ее описание.)[52] Коши был убежденным консерватором и монархистом, но в области математики он оказался знающим себе цену мятежником и настоящим бедствием для академических властей. Как только Коши понял, как можно обойтись без опасных бесконечно малых величин, он по собственной инициативе переписал свой учебный план в Политехнической школе (École Polytechnique) таким образом, чтобы тот отображал его новые идеи. Все окружение Коши пришло от этого в ярость: обманутые студенты, записавшиеся на курс изучения основ математического анализа, а не на семинар по новейшим достижениям в области чистой математики; коллеги, считавшие, что студентам, изучающим в Политехнической школе инженерное дело, не нужен предложенный Коши уровень математической строгости; администраторы, распоряжения которых по поводу необходимости придерживаться официальной программы курса обучения Коши полностью игнорировал. Администрация Политехнической школы ввела новый учебный план по математическому анализу и посадила на занятиях Коши стенографистов, чтобы удостовериться, что он будет придерживаться этого плана. Но Коши не стал этого делать. Его мало волновали потребности инженеров. Его интересовала истина{26}.

С педагогической точки зрения, трудно защищать поведение Коши. Тем не менее я с пониманием отношусь к его позиции. Одна из величайших радостей математики – неоспоримое ощущение, что ты поймал правильную мысль и докопался до самого ее основания. Такого чувства я не испытывал ни на одном другом уровне своей психической деятельности. А когда вы знаете, как делать что-то правильно, трудно (а для некоторых упрямцев просто невозможно) заставить себя объяснить это неверным способом.

Глава третья

Поголовное ожирение

Комический актер Евгений Мирман часто рассказывает историю, имеющую прямое отношение к статистике. По его словам, он любит повторять на своих выступлениях одну фразу: «Я читал, что сто процентов американцев – азиаты». Какой-нибудь озадаченный зритель обязательно возразит: «Но Юджин, вы же не азиат». В ответе артиста и содержится вся соль шутки: «Но я читал, что я азиат!»

Я вспомнил эту реплику Мирмана, когда натолкнулся в журнале Obesity на статью, в заголовке которой был поставлен весьма неприятный вопрос: «Будут ли все американцы страдать избыточным весом и ожирением?»{27} Как будто одной постановки вопроса было недостаточно, в статье дается ответ: «Да – к 2048 году».

Ровно в 2048 году мне стукнет семьдесят семь, и хотелось бы верить, что в столь почтенном возрасте я все-таки останусь при своем весе и не буду страдать ожирением. Но я читал, что буду!

Статья в журнале Obesity вызвала широкие дискуссии в прессе. В новостях предупреждали о наступлении «ожирения как катастрофы современности»{28}. В Long Beach Press-Telegram была опубликована статья с простым заголовком: We’re Getting Fatter («Мы становимся все более толстыми»){29}. Результаты исследования, проведенного автором этой статьи, перекликались с последним проявлением лихорадочной, постоянно меняющейся озабоченности американцев по поводу морального статуса нашей страны. Еще до моего рождения парни отращивали длинные волосы, а значит, мы были обречены на то, что коммунисты одержат над нами верх. Когда я был ребенком, мы слишком много играли в аркадные игры[53], что обрекало нас на проигрыш в конкурентной борьбе с трудолюбивыми японцами. Сейчас мы едим слишком много фастфуда, поэтому умрем слабыми и неспособными к самостоятельному передвижению, в окружении пустых пакетов от курятины, запихнутых под диваны, с которых мы уже давно не в состоянии подняться. В статье эта озабоченность была представлена в качестве научно доказанного факта.

Спешу вас обрадовать. Не все из нас в 2048 году будут страдать ожирением{30}. Почему? Потому что не все линии прямые.

Тем не менее, как мы узнали от Ньютона, каждая линия достаточно близка к прямой. Эта идея лежит в основе линейной регрессии – статистического метода, имеющего для социологии то же значение, что и отвертка при ремонте дома. Это инструмент, которым вы почти наверняка воспользуетесь, какая бы задача перед вами ни стояла. Каждый раз, когда вы читаете в газете, что: люди, у которых много двоюродных братьев и сестер, чувствуют себя более счастливыми; граждане стран, где шире представлена сеть экспресс-кафе «Бургер Кинг», больше придерживаются свободной морали; сокращение приема ниацина повышает риск дерматофитоза в два раза; каждые 10 тысяч долларов дохода на 3 % повышают вероятность, что вы проголосуете за республиканцев, – во всех этих случаях вы имеете дело с результатом, полученным методом линейной регрессии[54].

Вот как это работает. Вы хотите установить взаимозависимость между двумя параметрами, скажем между стоимостью обучения в университете и средним баллом по отборочному тесту SAT принятых на учебу студентов. Возможно, вы считаете: чем выше средний балл SAT, тем дороже учебное заведение, – но посмотрите на данные, которые говорят, что это далеко не универсальный закон. В Университете Элона, расположенном на окраинах Берлингтона (штат Северная Каролина), средний совокупный результат по математике и английскому языку составляет 1217 баллов; при этом университет взимает плату за обучение в размере 20 441 доллара в год. Обучение в Колледже Гилфорда, расположенном рядом, в городе Гринсборо, обходится немного дороже – 23 420 долларов, но средний результат первокурсников по SAT составляет там всего 1131 балл.

Вместе с тем, если вы посмотрите на весь список учебных заведений Северной Каролины – тридцать один частный университет, данные об оплате за обучение и о среднем балле которых были представлены в 2007 году в «Сети ресурсов для построения карьеры штата Северная Каролина», – вы увидите четкую тенденцию{31}.

На представленном ниже рисунке каждая точка графика соответствует одному из колледжей. Вы видите те две точки, которые находятся в правом верхнем углу, с высоким средним баллом SAT и столь же высокой платой за обучение? Это Университет Уэйк Форест и Университет Дэвидсона. Одинокая точка в нижней части рисунка соответствует единственному частному учебному заведению в этом списке, плата за обучение в котором меньше 10 тысяч долларов, – Колледжу медицинских наук Кабаррус.

[55]. В случае университетов штата Северная Каролина эта прямая выглядит так, как на следующем рисунке.

Назад Дальше