ГЕВЕ?Я, род вечнозелёных деревьев сем. молочайных. Каучуконосы (каучук выделяют млечники, находящиеся в стволе дерева). Все 10 видов рода – обитатели южноамериканских тропических лесов. Наиболее ценный вид – гевея бразильская, растущая в бассейне р. Амазонка. Путём подсочки (надрез ствола) с одного дерева ежегодно получают от 3 до 7,5 кг каучука.
ГЕ?ККЕЛЬ (Haeckel) Эрнст (1834–1919), немецкий биолог. Опираясь на теорию Ч. Дарвина, развил учение об эволюции живой природы. Выдвинул предположение о существовании в древности промежуточной формы между обезьяной и человеком, что после нахождения остатков питекантропа было научно подтверждено. Описал расы человека. Разработал теорию происхождения многоклеточных организмов, сформулировал биогенетический закон.
ГЕККО?НОВЫЕ, семейство ящериц. Включает св. 900 видов. Обитают на всех континентах в тропических, субтропических и отчасти умеренных зонах. В России известны 2 вида: пискливый геккончик, встречающийся в низовьях Волги, и серый геккон – в Восточном Предкавказье. Большинство гекконов имеют дл. от 3,5 до 30 см. Туловище плотное, несколько приплюснутое; голова крупная, уплощённая; конечности короткие, хвост умеренной длины. Тело покрыто мягкой кожей со множеством мелких чешуек, иногда расположенных черепицеобразно. Огромные глаза с вертикальным зрачком, расширяющимся в темноте, защищены прозрачным сросшимся веком, как у змей. Цепкие пятипалые лапки с острыми коготками снизу покрыты мельчайшими, раздваивающимися роговыми пластинками, снабжёнными присосками, позволяющими гекконам легко передвигаться по вертикальным, в т. ч. очень гладким (напр., стекло) поверхностям. У некоторых видов такие пластинки имеются и на хвосте. Большинство гекконов способны в схватке с врагами отбрасывать хвост и даже часть кожи, то и другое быстро регенерирует (восстанавливается).
Обитают гекконы на деревьях, скалах и т. п., поселяются на стенах и потолках домов, пустынные виды, напр. азиатский сцинковый геккон и африканский намибийский геккон, роют норки в песке, а передвигаться по песчаной поверхности им помогают роговые зубчики на пальцах (у первого вида) и межпальцевые перепонки (у второго). Древесные и «стенные» гекконы, ведущие ночной образ жизни, имеют серо-бурую покровительственную окраску, полностью скрывающую их в полутьме. Среди них – самый крупный (дл. 36 см) южно-азиатский геккон токки и самые мелкие из пресмыкающихся – плоскохвостый геккон с о. Мадагаскар (дл. 1,6 см) и карликовый круглопалый геккон с о. Гаити (дл. 1,2 см). Дневные мадагаскарские гекконы рода фелзума, наоборот, ярко-зелёные, с пёстрыми пятнами на спине.
Почти все гекконы – яйцекладущие, кладки небольшие – 1–2 яйца в оболочках, затвердевающих на воздухе, но самка откладывает их в щели и другие пустоты многократно. Самцы охраняют территорию различными звуковыми сигналами – от писка до громкого кваканья.
Виды из рода эублефаров хорошо разводятся в неволе.
ГЕ?КСЛИ, Хаксли (Huxley) Томас-Генри (1825–1895), английский естествоиспытатель. Президент Лондонского королевского общества (1883–1885). Единомышленник Ч. Дарвина, активно пропагандировал его учение. Занимался сравнительно-анатомическими исследованиями. Доказал морфологиче-скую близость человека и высших приматов, птиц и пресмыкающихся, медуз и полипов. Упорядочил систематику беспозвоночных животных. Обосновал положение о единстве строения черепа позвоночных животных.
ГЕЛИОФИ?ТЫ (светолюбивые растения), растения, не выносящие длительного затенения. Произрастают в степях, полупустынях, на солнечных опушках леса, вдоль дорог и на других открытых местах.
ГЕЛЬМГО?ЛЬЦ (Helmholtz) Герман Людвиг Фердинанд (1821–1894), немецкий учёный, естествоиспытатель. В области биологии занимался вопросами биофизики, изучал нервную систему, анатомию и физиологию органов зрения и слуха. Обосновал природу цветового зрения, объяснил явления близорукости и дальнозоркости, разработал таблицу для подбора очков, построил модель уха и создал резонансную теорию слуха.
ГЕЛЬМИ?НТЫ, паразитические черви, возбудители болезней (гельминтозов) человека, животных и растений. У человека и животных паразитируют многие плоские и круглые (первичнополостные) черви: аскариды, цепни, нематоды и др. Они локализуются в пищеварительном тракте, печени, почках, лёгких, мышцах, крови и др. Гельминтов человека и животных называют глистами. На растениях паразитируют только нематоды, поражая корни, клубни, стебли и листья. Заражение животных происходит в основном при заглатывании яиц гельминтов с кормом и водой; растений – в результате активного проникновения личинок нематод в ткани корневой или стеблевой системы.
Человек заражается гельминтами при попадании их яиц в ротовую полость с грязных рук, овощей, фруктов (аскариды, власоглавы); при употреблении в пищу недостаточно проваренного или прожаренного мяса (свиной и бычий цепни), слабосолёной или копчёной рыбы (печёночная двуустка, широкий лентец), от собак (эхинококк). Заражение некоторыми видами гельминтов происходит также через насекомых (комары) и ракообразных (крабы, раки), на которых паразитируют личинки червей. Заболевший гельминтозом теряет массу тела, у него нарушается пищеварение, развиваются анемия, аллергия. В зависимости от вида гельминтов поражаются печень (эхинококк, печёночная двуустка), лёгкие (эхинококк), мышцы (трихинеллы) и др. Лечение (дегельминтизация) проводится антигельминтными средствами, которые назначает врач. Профилактика заключается в соблюдении личной гигиены, тщательной кулинарной обработке пищи, дегельминтизации домашних собак.
Наука, изучающая гельминтов и вызываемые ими заболевания, – гельминтология (раздел паразитологии). Её основатель – К. И. Скрябин, описавший св. 200 неизвестных ранее видов гельминтов и разработавший способы профилактики и лечения гельминтозов.
ГЕМИКСЕРОФИ?ТЫ (полуксерофиты), растения сухих местообитаний, имеющие очень длинную корневую систему, доходящую до грунтовых вод, и отличающиеся поэтому интенсивной транспирацией, помогающей избежать перегрева тканей. По внешнему облику часто сходны с ксерофитами, но не выносят длительного завядания. Осмотическое давление в клетках высокое. К полуксерофитам относятся верблюжья колючка, люцерна жёлтая, шалфей, эвкалипт и др.
ГЕМОГЛОБИ?Н, красный дыхательный пигмент крови человека, позвоночных и некоторых беспозвоночных животных. Состоит из белка (глобина) и железопорфирина (гема). Осуществляет газообмен – переносит кислород от лёгких к тканям и углекислый газ от тканей к лёгким. У различных видов организмов имеет разное строение. В 100 мл крови человека в норме содержится 13–16 г гемоглобина. Многие заболевания крови – анемии вызваны уменьшением его количества или нарушением строения.
ГЕМОФИЛИ?Я, наследственная болезнь, характеризующаяся нарушением свёртывания крови. Передаётся по рецессивному типу наследственности, при котором болеют мужчины, а носительницами гемофильного гена являются женщины. Проявляется у мальчиков уже в раннем детском возрасте. При незначительных травмах (царапинах, порезах) возникают обильные кровотечения, возможно появление крови в моче. Наблюдаются кровоизлияния в органы брюшной полости, мышцы, подкожную клетчатку с образованием обширных припухлостей (гематом). Наиболее часто происходят кровоизлияния в полость суставов, особенно коленных и голеностопных, вследствие чего нарушается сгибание в поражённых суставах, мышцы ног слабеют, уменьшаются в объёме (атрофируются). Лечение больных гемофилией заключается в переливании антигемофильной плазмы, содержащей вещества свёртывания крови, отсутствующие у больного. Излившуюся в полости суставов и внутренние органы кровь удаляют, затем проводят физиотерапевтические процедуры. Детям, страдающим гемофилией, не следует заниматься физкультурой, бегать, прыгать, необходимо двигаться с большой осторожностью, хотя на протяжении жизни избежать ушибов и царапин невозможно. Если больному гемофилией предстоят операция, удаление зуба или любое травмирующее вмешательство, его следует подготовить, предварительно перелив ему плазму и криопреципитат (очищенный концентрат фактора свёртывания крови).
ГЕН, единица генетического материала; участок молекулы ДНК (у некоторых вирусов – РНК), определяющий (кодирующий) возможность развития какого-либо признака. Ген – функционально неделимая единица, т. е. один ген, как правило, отвечает за один элементарный признак. Таким признаком на молекулярном уровне может быть молекула белка или РНК, а на уровне организма, напр., цвет семян гороха или цвет глаз человека. Вместе с тем возможность реализации гена, его проявления в виде признака зависят от ряда факторов, прежде всего от взаимодействия с другими генами, образующими генотипиче-скую среду (см. Генотип).
Изучение строения, организации, принципов работы генов (или несколько шире – генетического материала) – центральная проблема генетики на всех этапах её развития. При этом представления о гене как о наследственном факторе, обладающем функцией, физической природой, способностью к изменчивости и другими свойствами, существенно изменялись и дополнялись. В 1865 г. Г. Мендель на основании своих опытов по гибридизации растений доказал существование дискретных наследственных «задатков», которые датский генетик В. Иогансен в 1909 г. назвал генами. Работы Менделя открыли возможность точного генетического (гибридологического) анализа наследственности и после их повторения в 1900 г. дали толчок необычайно быстрому становлению генетики. Уже в первой трети 20 в. было установлено, что гены линейно расположены в хромосомах клеточного ядра (см. Хромосомная теория наследственности), что они могут подвергаться естественным или вызываемым искусственно наследуемым изменениям – мутациям и что при передаче их от родителей к потомкам происходит их перераспределение – рекомбинация. При этом оказалось, что ген как единица функции и ген как единица мутации и рекомбинации – не одно и то же. Так возникло представление о сложном строении гена, однако вопрос о его химической природе оставался нерешённым. Наконец, в 40-х гг. на микроорганизмах было показано, что веществом генов является дезоксирибонуклеиновая кислота (ДНК), а в 1953 г. создана её пространственная модель (т. н. двойная спираль), объяснявшая биологические функции этой гигантской молекулы её строением. Началось бурное развитие молекулярной биологии гена. Вскоре были раскрыты способы записи генетиче-ской информации (генетический код) и механизм её передачи в процессах репликации, транскрипции и трансляции. Ещё в 40-х гг. была выдвинута концепция: «один ген – один фермент», согласно которой каждый ген определяет структуру какого-либо фермента (белка). Теперь это положение уточнялось: если белок состоит из нескольких полипептидных цепей, то каждая из них кодируется отдельным геном, т. е. более верна формула: «один ген – одна полипептидная цепь». В клетках существуют набор генов, специфичный для организмов одного биологического вида, и механизмы регуляции их активности. Благодаря этому происходит регулируемый синтез ферментов и других белков, обеспечивающих специализацию клеток и тканей в процессе развития организма из оплодотворённой яйцеклетки и поддерживающих характерный для вида тип обмена веществ.
В дальнейшем были исследованы особенности организации генетического материала у прокариот, эукариот и вирусов, а также у клеточных органоидов – митохондрий и хлоропластов, открыты т. н. мобильные гены, перемещающиеся по геному, расшифрована структура (нуклеотидная последовательность) геномов ряда организмов, в т. ч. человека. Разработка методов выделения, клонирования и гибридизации отдельных генов (участков ДНК) привела к появлению важной в практическом отношении генной инженерии, ряда направлений в биотехнологии. См. также Аллель, Геном, Хроматин.
ГЕНЕРАТИ?ВНЫЕ О?РГАНЫцветковых растений, органы (цветки и плоды), обеспечивающие функцию полового размножения. Вместе с вегетативными органами относятся к репродуктивным, обеспечивающим увеличение численности и расширение ареала вида.
ГЕНЕ?ТИКА, наука о наследственности и изменчивости живых организмов. Так как эти свойства присущи всем без исключения организмам, они представляют важнейшие характеристики жизни в целом, а генетика служит фундаментом всей биологии.
В течение тысячелетий при разведении домашних животных и культурных растений человек пользовался добытыми на основании опыта сведениями о передаче от поколения к поколению хозяйственно-полезных признаков. Однако первые научные представления о сущности явлений наследственности и изменчивости появились лишь во 2-й пол. 19 в. В 1865 г. Г. Мендель сообщил результаты своих опытов по скрещиванию сортов гороха и сформулировал закономерности наследования «зачатков» (позднее их назвали генами), определяющих альтернативные признаки. Эта работа была понята и оценена только в 1900 г., когда законы Менделя независимо друг от друга заново открыли трое учёных. С этого момента началось бурное развитие генетики, подготовленное достигнутыми в кон. 19 в. успехами цитологии (выяснение механизмов митоза и мейоза, гипотеза о роли клеточного ядра в наследственности, теоретические работы А.Вейсмана и др.). В первой трети 20 в. была выявлена роль мутаций в наследственной изменчивости, а также получены первые результаты по искусственному мутагенезу. Т.Х. Морган и его ученики создали хромосомную теорию наследственности. Плодотворно развивалась генетика и в нашей стране: Н.И. Вавилов открыл закон гомологических рядов в наследственной изменчивости, были выполнены выдающиеся работы по изучению сложного строения гена, установлена роль мутационного процесса в эволюции природных популяций, что позволило объединить закономерности генетики с дарвинизмом. Крупных успехов отечественные учёные достигли в частной генетике растений и животных. Вместе с тем неясным оставался один из самых принципиальных вопросов – вопрос о химической природе генетического материала – «вещества наследственности». Наконец, в 1944 г. экспериментально было доказано, что этим веществом у бактерий являются нуклеиновые кислоты, точнее – дезоксирибонуклеиновая кислота, или ДНК. Начавшееся с сер. 20 в. широкое применение в генетических исследованиях методов и идей химии, физики и математики привело к возникновению молекулярной генетики и, несколько шире, молекулярной биологии. Датой рождения последней обычно считают 1953 г., когда Дж. Уотсон и Ф. Крик не только установили структуру ДНК (предложили модель т. н. двойной спирали), но и объяснили биологические функции этой гигантской молекулы (а значит, и свойства наследственности и изменчивости) её химическим строением.
Следующими достижениями стали установление принципов работы генетического кода (1961–1965), выяснение различных аспектов организации и функционирования генетического материала у разных групп организмов, создание генной инженерии. В самом начале 21 в. международная группа учёных завершила многолетнюю работу по расшифровке генома человека.
Генетика внесла огромный вклад в решение многих проблем сельского хозяйства, медицины, микробиологиче-ской и фармацевтической промышленности. Все шире её методы используются в криминалистике, палеонтологии, истории. Без учёта генетических закономерностей невозможно понимание фундаментальных свойств жизни, характера её эволюции на Земле. Таким образом, генетика остаётся одной из наиболее перспективных и быстро развивающихся отраслей биологии.
ГЕНЕТИ?ЧЕСКИЙ КОД, способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов. Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тимина урацил – У (U). Каждую аминокислоту кодирует комбинация из трёх нуклеотидов – триплет, или кодон. Кратко путь переноса генетической информации обобщён в т. н. центральной догме молекулярной биологии: ДНК ` РНК f белок.