От водорода до …? - Таубе Петр Рейнгольдович 24 стр.


Желая ознакомить иностранных ученых с открытием нового элемента, Клаус послал образец металла Берцелиусу. Ответ Берцелиуса был по меньшей мере странным. Имея в руках новый элемент с подробным описанием свойств, он не согласился с мнением Клауса. Берцелиус заявил, что полученный от Клауса металл есть «проба нечистого иридия», давно известного элемента. Позднее Берцелиус вынужден был признать свою ошибку.

Открытый элемент был в дальнейшем тщательно исследован. Изучение химических свойств рутения показало ряд интересных особенностей его химических соединений. Однако отсутствие сколько-нибудь значительных запасов этого металла в земной коре (встречается в лаурите — редком минерале, о-в Борнео), трудность добычи и отделения от других спутников платины до сих пор препятствуют применению рутения. Как только геологи обнаружат значительные месторождения этого элемента в каких-нибудь малоизученных районах или в глубоких слоях земной коры, элемент рутений займет достойное место в практической деятельности человека. О рутении во всех книгах сказано весьма немного: крайне редок и поэтому не нашел достаточного применения. В чистом виде рутений находит применение в изготовлении термопар, а также как катализатор при синтезе аммиака. В сплавах рутений используется в ювелирном деле, некоторые соли находят применение в лабораторной технике при изготовлении микроскопических препаратов.

По внешнему виду рутений — металл, похожий на железо, твердый, тугоплавкий, с трудом растворяющийся в царской водке, обладает сильными каталитическими свойствами.

Еще один спутник платины

45. Родий — Rhodium (Rh)

В начале XIX в. английский химик и физик В. Волластон занялся тщательным анализом платиновых руд, и его труд был вознагражден сразу двойной удачей. В платине он обнаружил два неизвестных металла. Один из них за розовый цвет растворов своих солей был назван родием (по-гречески «родон» — розовый). Родий постоянно сопутствует платине, изредка встречается в самородном состоянии в золотоносных песках. Платина относится к числу малораспространенных элементов, а родия в природе в 2,5 раза меньше платины. Если учесть, что отделение родия от платины и других ее спутников представляет значительные технологические трудности, то станет понятным и редкость, и высокая стоимость родия.

Родий — металл исключительно стойкий к действию многих веществ. Он не растворяется не только в обычных кислотах, но и в царской водке. Температура плавления родия — около двух тысяч градусов (1966 °C). В жидком состоянии родий растворяет до семи процентов углерода, а при охлаждении выделяет растворенный углерод в виде графита. Если бы родий был более доступным металлом, его можно было бы применять для получения чистейшего графита, столь необходимого во многих отраслях современной техники. Родий обеззараживает воду. Такая бактерицидная способность родия весьма ценна для очищения воды от болезнетворных микроорганизмов. Возможно, что в недалеком будущем родий получит применение в лечебных целях.

Все спутники платины известны как хорошие катализаторы, особенно в состоянии большого измельчания, как говорят химики, в виде «черни».

Большинство металлов в компактном состоянии обладает специфическим, так называемым металлическим блеском и «белым», «светлым» цветом. Исключение составляют медь, золото и немногие другие цветные металлы, у которых сохраняется свой характерный для них цвет и при измельчении. Однако тонкие порошки других металлов имеют серый цвет, а тончайший порошок — черный или почти черный. Отсюда и химическое, а затем и техническое название — «чернь».

Родиевая «чернь» растворима в кислотах, в то время как родий в слитке, как уже указывалось, нерастворим даже в царской водке. Каталитическая активность родиевой «черни» настолько велика, что винный спирт быстро переходит в ее присутствии в уксусную кислоту. К тому же родиевый катализатор стоек против ядов, отравляющих катализаторы.

В чистом виде родий применяется для изготовления точнейших пирометров, деталей измерительных астрономических приборов, а также для зеркал и рефлекторов осветительных установок.

Уступая серебру в отражательной способности, в отличие от него родий не тускнеет с течением времени.

Предупредитель угара

46. Палладий — Palladium (Pd)

В 1902 г. немецкий астроном Г. Ольберс, обнаруживший на основе вычислений немецкого математика К. Гаусса потерянную вскоре же после открытия первую малую планету Цереру, открыл вторую малую планету солнечной системы, которая была названа Палладой.

Год спустя В. Волластон нашел еще одного представителя семейства платиновых металлов и назвал его по имени недавно обнаруженной планеты палладием.

Незначительные примеси палладия встречаются в платиновых рудах и в золотоносных песках, т. е. разрушенных горных породах. Значительно реже палладий находится в виде естественных сплавов с платиной, иногда с золотом или серебром. Во многих отношениях палладий сходен с металлами платиновой группы, но есть и некоторые существенные отличия. Эти отличия состоят прежде всего в том, что палладий является самым легкоплавким и легким из них: температура плавления его немного превышает 1550 °C, а плотность равна 12. Впрочем эта оговорка может показаться и не совсем удачной: ведь у многих металлов температура плавления значительно ниже. Например, железо плавится при температуре на полтора десятка градусов ниже палладия и в полтора раза легче его.

…Если в стеклянной колбе смешать два объема водорода и один объем кислорода, то при комнатной температуре такая смесь может сохраняться очень долго. Нагревание смеси до 400 °C приводит к тому, что водород и кислород полностью соединяются и образуют воду. Если же в смесь этих двух газов внести палладий, то уже при комнатной температуре из газов быстро образуется вода. Палладий является энергичным катализатором многих химических реакций. Как и другие катализаторы-металлы, палладий проявляет особенно сильно каталитические свойства в виде черни. Каталитические свойства палладия, очевидно, связаны с его исключительной способностью поглощать, или, как говорят химики, окклюдировать, в себе некоторые газы и особенно водород. Один кубический сантиметр палладия поглощает более семисот кубических сантиметров водорода. При этом прочный металл увеличивается в объеме, вспучивается и даже дает трещины. Нечто подобное можно наблюдать при набухании резины в бензине и маслах. Известно, что если закрыть склянку с бензином резиновой пробкой, ее потом нельзя вытащить: она разбухает от поглощения бензина.

С поглощением или растворением водорода в палладии связано и другое удивительное свойство этого металла: способность пропускать сквозь себя водород. Через перегородку толщиной в один миллиметр и площадью в один квадратный сантиметр проходит более сорока кубических сантиметров водорода в минуту при температуре 240 °C. При более высокой температуре просачивание водорода увеличивается. Таким образом, наши обычные представления о металле как о прочной преграде для газов не всегда оказываются верными.

Химическая стойкость палладия меньше, чем у других платиновых металлов, но зато большая доступность палладия дает и более широкие возможности для его применения, чего нельзя сказать об остальных спутниках платины.

В сплаве с серебром, а иногда и в чистом виде, палладий применяется в зубоврачебной технике, в сплавах с золотом — в часовом деле. Благодаря своей высокой стойкости и красоте палладий применяется в ювелирном деле для покрытия других металлов и для отделки предметов роскоши, в частности оправ драгоценных самоцветов. Особо ответственные контакты в счетно-решающих машинах с большим числом операций покрывают палладием.

…Одним из сильных ядов является окись углерода, которую в быту обычно называют угарным газом. Это коварный яд. Не имея ни цвета, ни запаха, ни вкуса, он трудно определим, особенно при малом, но уже опасном для жизни, содержании в воздухе.

Образуется угарный газ сравнительно легко, при работе двигателей внутреннего сгорания, при преждевременном закрывании печей, при получении генераторного газа и в целом ряде химических производств. Предельно допустимой концентрацией угарного газа в воздухе промышленных предприятий считается 0,02 мг в литре. Вдыхание воздуха, содержащего 5–7 мг угарного газа в литре, влечет смерть через 5–10 минут.

Очень удобны для установления присутствия этого газа в воздухе соединения палладия. Фильтровальная бумажка, смоченная раствором хлористого палладия, быстро чернеет и тем указывает на грозящую опасность. Такой безотказный сигнализатор приносит большую пользу в тех областях техники и производства, где приходится соприкасаться с угарным газом. Чувствительность реакции очень высока. При концентрации угарного газа 9 мг в литре воздуха бумажка чернеет моментально, при 0,02 мг — почернение наступает через минуту.

Заканчивая рассказ о палладии, укажем, что одновременно с открытием гелия было установлено присутствие палладия и на Солнце.

Тайна болезни воинов Александра Македонского

47. Серебро — Argentum (Ag)

Войско Александра Великого, более известного под именем Македонского, двигалось с боями по странам Азии (IV в. до нашей эры). После того как войска вступили на территорию Индии, среди воинов начались тяжелые желудочно-кишечные заболевания.

После ряда кровопролитных сражений и пышно отпразднованных побед весной 326 г. Александр вышел к берегам Инда. Однако победить главного своего врага — болезнь — «непобедимое» войско Александра не могло. Воины, истощенные и обессиленные, отказались идти вперед к берегам Ганга, куда влекла Александра жажда завоеваний. Осенью 326 г. войска Александра начали отступление.

Сохранившиеся описания истории походов Александра Македонского показывают, что рядовые воины болели чаще, чем военачальники, хотя последние находились в походе в одинаковых условиях с рядовыми воинами и в равной степени делили с ними все неудобства и лишения походной жизни. Только через 2250 лет причина различной заболеваемости воинов Александра Македонского была найдена. Она заключалась в разности снаряжения: рядовому воину полагался оловянный бокал, а военачальнику — серебряный.

Как известно, абсолютно нерастворимых веществ в природе нет. Правда, одни вещества растворяются хорошо, другие — хуже, третьи же, на первый взгляд, кажутся совсем нерастворимыми. Но так только кажется. Вещество, которое мы считаем нерастворимым, при более тщательном изучении обладает очень малой растворимостью. Такой малой растворимостью обладает и серебро. В отличие от других металлов незначительные, буквально невесомые количества растворенного серебра способны убивать микроорганизмы, находящиеся в воде. Среди них, конечно, могут быть и те, которые являются причиной желудочно-кишечных заболеваний. Поэтому вода, хранящаяся в серебряном сосуде, долгое время не портится. Растворившееся серебро убивает микроорганизмы, размножающиеся при гниении. Достаточно несколько миллиардных долей грамма серебра, чтобы обезвредить литр воды. Для придания воде бактерицидных свойств достаточно кратковременного контакта с серебром.

Так, употребление серебряных кубков, хотя бы частично, предохраняло военачальствующий состав армии Александра Македонского от желудочно-кишечных расстройств и заболеваний. Возможно, что подобного рода наблюдения над своеобразными свойствами серебра привели еще раньше жителей древнего Египта (2500 лет до н. э. у них серебро ценилось дороже золота) к оригинальному способу лечения открытых ран: на раны накладывали серебряные пластинки.

В наше время обеззараживающие свойства серебра и его солей широко используются в санитарной технике и медицине для стерилизации воды, изготовления «серебряной марли», «серебряной ваты» для лечения кожных заболеваний, трудно заживающих ран, язв и т. д.

Количество растворенного серебра зависит от поверхности соприкосновения его с водой. Чтобы не увеличивать поверхности серебряных изделий, исследователи предложили осаждать серебро в виде тончайшей пленки на зернах обычного песка. Фильтрация воды через такой «серебряный песок» достаточна для того, чтобы вода освободилась от микробов. Затрата серебра сводится при этом к минимуму, а достигаемый результат становится максимальным.

Большую роль в нашей повседневной жизни играет зеркало. Зеркало — не предмет роскоши, а насущная необходимость. Невозможность видеть самого себя для современного человека почти немыслима. Бритье, исправление небрежностей в одежде, уход за состоянием лица и многое другое невозможно осуществить без зеркала. И неудивительно, что зеркало является одним из древних предметов человеческого обихода. Долгое время роль зеркал играли полированные металлические пластинки, чаще всего золотые или серебряные. Понятно, что такие зеркала были очень дороги и, представляя большую ценность, являлись достоянием богатых людей. После «изобретения» первого сплава — бронзы — в обиход вошли зеркала из бронзы. Бронзовые и медные зеркала были широко распространены у римлян и греков. Много таких зеркал было найдено при раскопках Помпеи. Металлические зеркала из бронзы, меди и серебра существовали на протяжении весьма долгого времени.

Стеклянные зеркала, несмотря на то, что стекло было изобретено очень давно, появились сравнительно поздно. Это объясняется тем, что для изготовления стеклянного зеркала нужны были уже достаточные знания, которыми в древности еще не располагали. Стеклянное зеркало по сути дела тоже является металлическим. Ведь отражающим в стеклянном зеркале является металл, только в виде тонкого слоя, нанесенного на гладкую стеклянную поверхность. Стекло, таким образом, лишь прозрачная основа, держащая на себе тончайшее металлическое зеркало. Для изготовления стеклянного зеркала необходимо было иметь совершенно бесцветное, чистое, прозрачное, гладкое стекло с одной стороны, тончайший слой металла, собственно зеркало — с другой. Идеальное и прочное покрытие стеклянной поверхности металлом было третьим необходимым условием для изготовления такого обычного в нашем обиходе, стеклянного зеркала. Впервые более или менее удовлетворительно эти условия были осуществлены около 600 лет назад, когда и стали появляться первые стеклянные зеркала.

Отражательная поверхность первых зеркал готовилась из свинцово-сурьмяного сплава, однако он быстро тускнел на воздухе и терял необходимые для зеркала свойства. 200 лет спустя был найден ртутно-оловянный сплав. Он обладал хорошей отражательной способностью и несмотря на большую вредность производства (наводчики зеркал отравлялись при изготовлении этого сплава парами ртути) почти до середины XIX в. являлся незаменимым в зеркальном деле.

В 1846 г. был найден способ покрытия стекла тонким слоем серебра. В течение десяти лет совершенствовался этот способ. И только после 1855 г., когда французский химик Птижан и выдающийся немецкий химик Либих нашли простые рецепты для нанесения серебра на стекло, серебряное зеркало на стеклянной основе получило повсеместное распространение. Этими зеркалами пользуетесь и Вы, уважаемый читатель. Но зеркало — не только предмет быта, украшение квартиры. Зеркало — это инструмент врачей, необходимая деталь многих точных измерительных и регистрирующих физических приборов, оно — необходимейшая часть микроскопов и телескопов, с помощью которых человек исследует два мира, противоположных по размерам и одинаковых по беспредельности познания.

…Посмотрите на свою фотографию или на рисунок в книге. И тут необходимо серебро! Фотографирование, столь распространенное в нашей жизни в часы отдыха и труда, основано на светочувствительных свойствах некоторых солей серебра. Из таких солей в настоящее время чаще всего применяется бромистое серебро. Фотографические пластинки, пленки, бумага состоят в основном из соответствующей основы (стекло, целлулоид, бумага, картон), на которую нанесен светочувствительный слой из мельчайших частиц бромистого серебра, распыленных в желатине. Толщина светочувствительного слоя не превышает 0,02 мм. При освещении пластинки или пленки содержащееся в светочувствительном слое бромистое серебро под влиянием световых лучей распадается. Бром связывается химически желатином, а серебро выделяется в виде мельчайших, невидимых даже в обычный микроскоп кристалликов. Так как степень разложения бромистого серебра зависит от силы освещения, то, несмотря на кажущуюся однородность светочувствительного слоя, в нем уже имеется «скрытое изображение» предмета. Чтобы сделать его видимым, светочувствительный слой проявляют, т. е. обрабатывают химическими веществами (проявителями), выделяющими металлическое серебро. Достигнув достаточной четкости изображения, его фиксируют. Сущность фиксации состоит в том, что из светочувствительного слоя химическим растворителем извлекается еще не разложившееся бромистое серебро, иначе полученный негатив быстро потускнеет за счет распада остатков бромистого серебра при печатании снимков. После фиксации получают устойчивое, видимое на свету изображение предметов — негатив. Для получения истинного изображения негатив накладывается на светочувствительный слой фотобумаги и подвергается освещению. При таком печатании скрытое изображение с правильным соотношением света и тени возникает в светочувствительном слое фотобумаги (позитив), для получения которого фотобумагу, подобно пластинке или пленке, также проявляют и фиксируют. Так получают, наконец, фотокарточку, которой, очевидно приходилось интересоваться и Вам. Фотография — это не только фотокарточка. Фотография — это искусство кино и многочисленные достижения науки, техники, промышленности. И след болезни в легком человека, и новая комета в глубинах Вселенной, и тонкая структура невидимого атома становятся близкими и доступными для наблюдения и изучения с помощью фотографии, несмыслимой без серебра и его соединений.

Назад Дальше