Происхождение растений - Комаров Владимир Леонтьевич 5 стр.


Отсюда тот живой интерес, с которым К. Маркс и Ф. Энгельс отметили в своей переписке извещение Гексли о якобы открытом им глубоководном организме батибии, состоявшем из белковой слизи. Хотя впоследствии химический анализ не подтвердил этого, самая идея не потеряла значения.

«Жизнь есть способ существования белковых тел, и этот способ существования заключается по своему существу в постоянном обновлении их химических составных частей путем питания и выделения» [19].

Ф. Энгельс

Глава IV

КРУГОВОРОТ ЖИЗНИ И КРУГОВОРОТ ВЕЩЕСТВА В ПРИРОДЕ

Известно, что если сжечь массу различных растении, предварительно высушив их до постоянного веса, то получится, с одной стороны, водяной пар и углекислый газ, а с другой стороны — зола. Если теперь разложить полученные вещества на элементы, то мы получим в процентах следующие соотношения:

Углерод….. 45

Кислород… 42

Водород…. 6,5

Азот………. 1,5

Остальные: сера, фосфор, калий, кальций, магний, железо, хлор, кремний, иод, бром, натрий

В то время как первые 4 элемента составляют 95 % общего веса сухого вещества растений, все остальные встречающиеся в их золе простые вещества дают в сумме всего 5 %. Тем не менее, без серы, фосфора, калия, кальция, магния и железа, как показывают точные опыты с культурами на минеральных растворах, растения существовать не могут.

Жизнь растений тесно связана с поглощением элементов, составляющих их тело. Обмен веществ — главная и наиболее важная для нас работа растений. Посмотрим, откуда они заимствуют эти элементы и куда отдают их по использовании. Надо иметь в виду, что растения не поглощают твердой пищи, не имеют пищеварительной полости, а питаются водными растворами необходимых для их дыхания и роста веществ, которые поглощают путем всасывания корнями и внутренними частями мякоти листьев. Для того, чтобы выяснить значение и перемещения каждого из существенных для жизни растений элементов, прибегнем к методу выяснения того круговорота веществ, который постоянно происходит на Земле, то переводя интересующий нас элемент в свободное состояние, то снова связывая его в составе сложных соединений, входящих в состав тела растений или участвующих в их обмене с внешней средой.

1. УГЛЕРОД

Согласно сводке В. И. Вернадского (Геохимия, 1927), среднее содержание углерода в земной коре соответствует 0,4–0,5 % от общего ее веса. В странах, богатых известняками (углекислый кальций), количество углерода выше и достигает 10–12 %. Но во всех подобных случаях значительная часть этого запаса углерода образовалась за счет остатков живых существ и, особенно, растений, погребенных под слоями наносов.

Первичными соединениями углерода, возникшими помимо участия организмов в его накоплении, как показывают химические исследования продуктов вулканизма, являются углекислота, окись углерода, углеводороды, наконец, некоторые производные муравьиной кислоты, которая может образовываться при высоких температурах путем восстановления углекислоты в присутствии воды.

Угольная кислота, как уже упоминалось, выделяется вулканами в огромных количествах и затем более или менее равномерно распределяется в атмосфере. Как известно, она составляет 0,03 % общего веса нижних слоев атмосферы. И хотя углерод составляет только 3/11 веса углекислоты, а остальные 8/11 приходятся на кислород, тем не менее общий запас углерода в атмосфере исчислен в 800 биллионов кг.

Углекислота [20]воздуха, как и все газы, способна диффундировать, т. е. равномерно распределяться во всем доступном ей пространстве. Сквозь невидимые глазу отверстия в кожице листьев, называемые устьицами, она проникает во внутренние полости листа, воздушные ходы, и здесь растворяется в жидкости, смачивающей оболочки живых клеток мякоти листа. Водный раствор углекислоты встречает внутри клеток зеленые хлорофильные зерна и при их содействии разлагается действием солнечных лучей, распадаясь на углерод и кислород. Кислород выделяется наружу, а углерод вступает в соединение с элементами воды, кислородом и водородом и образует тройные соединения, называемые углеводами, причем основным соединением этого рода приходится считать виноградный сахар, или иначе глюкозу. Далее идут крахмал, тростниковый сахар, клетчатка и многие другие менее распространенные тела той же химической группы углеводов.

В процессе дыхания растение, поглощая из воздуха свободный кислород, снова образует углекислоту за счет углеводов и отдает ее назад атмосфере. Процесс этот называется также диссимиляцией и сопровождается потерей в весе, тогда как усвоение углерода углекислоты — ассимиляция дает увеличение веса.

В тех случаях, когда кислорода недостаточно для полного окисления сахара на углекислоту и воду, возникают обычно процессы брожения, дающие при распаде сахара выход спирта и углекислоты. Значительная часть поглощенного растением углерода утилизируется им на постройку его тканей и отдается обратно только после его гибели, когда процессы гниения и брожения разложат и древесину и другие части растения с конечным образованием тюх же углекислоты и воды, метана и пр.

В самом растении углевод претерпевает весьма сложные превращения, входя в состав живого вещества, а также в образуемые растением запасы.

С превращениями углерода тесно связаны превращения солнечной энергии, поглощаемой зелеными растениями одновременно с углекислотой. При усвоении углерода и образования углеводов поглощается масса энергии и вся она переходит в потенциальную химическую энергию углеводов. Если вместо углеводов образуются жирные масла, или за счет углеводов и жирных масел путем присоединения к ним азотистых соединений образуются белки или протеины, то и в них вводится потенциальная химическая энергия, заимствованная от Солнца.

При дыхании, брожении, гниении потенциальная химическая энергия углеводов, жиров и белков, составляющих тело растения, освобождается, превращается в динамическую и так или иначе расходуется. Мы лучше всего это видим, когда сжигаем в наших печах дрова или уголь и пользуемся освобождающимся при этом теплом.

Сжигаемое ежегодно количество каменного угля, не считая других видов топлива, выбрасывает в атмосферу около 1400 000 млн. кг углекислоты, которая снова утилизируется растениями. Таким образом, общий круговорот углекислоты в природе таков:

1. Углерод углекислоты воздуха.

2. Углерод углеводов, жиров и белков в растениях.

3. Углерод тела животных, полученный ими вместе с растительной пищей.

4. Углекислота, полученная благодаря дыханию.

5. Остатки животных и растений, постепенно отдающие свой углерод углекислоте, благодаря процессам брожения, или обугливающиеся, или иным путем переходящие в запасы минерального топлива.

6. Углекислота, как продукт горения различных видов топлива.

Часть углекислоты выходит из круга при образовании известняков и других углекислых минералов или солей, но пополняется той углекислотой, которую выбрасывают вулканы.

Уже из этого краткого очерка можно видеть, что общий запас углекислоты в атмосфере мог в различные эпохи, пережитые нашей Землей, изменяться значительно, а вместе с этим изменились и прозрачность атмосферы, а также и условия дыхания живых существ.

2. КИСЛОРОД

Кислород — один из наиболее деятельных элементов земной поверхности и один из наиболее распространенных. Свободный кислород — одна из важнейших составных частей атмосферы. Много его растворено в воде, соленой и пресной, в снегах и льдах северных стран. Кроме того, мы имеем большой запас связанного кислорода в воде и в других окислах. Процессы окисления — одни из важнейших на земной поверхности.

Откуда взялся свободный кислород? Он существует только на поверхности Земли. Его нет ни в воде источников, берущих свое начало в глубоких слоях Земли, ни в выделениях вулканов. Газы, выделяемые вулканами, многократно уже подвергались анализу, особенно американцами на Сандвичевых островах, где для этого особенно удобные условия, благодаря постоянству действующих вулканов Мауна-Лоа и Мауна-Кеа. В Японии, в южной Европе, на Камчатке, всюду газы вулканов — это углекислота, хлористый водород, сернистый водород и другие, но никогда не кислород.

Рассматривая другие мыслимые источники выделения свободного кислорода на поверхности Земли, мы понемногу убеждаемся, что минеральный мир не дает нам ни одного процесса, связанного с выделением свободного кислорода. При высоких температурах первых периодов существования Земли он был

всецело захвачен окислительными реакциями и выделялся в атмосфере связанным, в виде углекислоты и воды, не считая менее распространенных окислов. Даже в воде глубоких источников, как это доказал уже в конце XVII в. Пирсон в Англии, его в растворе нет, тогда как поверхностные воды Земли обычно содержат в растворе свободный кислород, заимствуемый ими из атмосферы.

Свободный кислород — один из наиболее деятельных, наиболее активных элементов. Процессы соединения с кислородом, процессы окисления дают громадное количество химических соединений, исчисляемых тысячами. Сюда входят окислы углерода и серы, железа и марганца, как особенно обильные. Благодаря этому громадное количество кислорода постоянно связывается, и процентное его содержание в атмосфере должно было бы постоянно уменьшаться, если бы не единственная в своем роде реакция освобождения кислорода в хлорофильных зернах зеленых растений.

Биохимическая реакция освобождения кислорода — единственная реакция, дающая атмосфере значительные количества этого важнейшего газа. Не надо забывать той роли, которую играют в данном процессе солнечные лучи, как источник энергии.

Дерево, содержащее в своей древесине 2500 м 3углерода, для того, чтобы ее построить, должно было освободить от углекислоты 12 млн. м 3воздуха. Урожай зерна, который мы снимаем с наших полей, дает до 14 400 млн. кг углерода, причем наши пшеничные поля, для того, чтобы сконцентрировать в своем зерне всю эту массу углерода, должны ежегодно освобождать от углекислоты не менее 24 000 000 000 000 м 3воздуха, заменяя всю имеющуюся в них углекислоту равным объемом свободного кислорода.

Исходя из этого, мы можем легко установить общий круговорот кислорода:

1. Свободный кислород воздуха.

2. Процессы дыхания, горения, коррозии металлов (ржавление) и прочие реакции окисления связывают свободный кислород воздуха, уменьшают запас его в атмосфере, обогащая последнюю углекислотой.

3. Кислород углекислоты освобождается при усвоении растениями углерода угольной кислоты и возвращается атмосфере.

4. Кислород участвует в образовании растениями углеводов, жиров и белков, а также и многих других соединений, вовлекаясь при этом в круговорот жизненных явлений.

5. При дыхании кислород органических соединений превращается в кислород углекислоты и воды или же остается связанным, входя в состав продуктов, вырабатываемых растениями.

6. Связанный кислород органических соединений или углекислоты становится материалом для питания растений, животных и человека.

Если мы признаем, что весь свободный кислород атмосферы выделен зелеными растениями, то ясно, что до появления этих растений его не было. Следовательно, в атмосфере было больше углекислоты, чем теперь, и общий состав ее не мог поддерживать дыхания животных, которых в то время и не могло быть на Земле.

Задача растений — не только в том, чтобы использовать в явлениях жизни энергию солнечных лучей, чтобы непрестанно вводить в ее круговорот частицы углерода, обогащенного этой энергией, но и в том, чтобы создать атмосферу, которая поддерживала бы нормальную жизнь.

3. ВОДОРОД

Водород в свободном виде редок на Земле и не принимает участия в процессах жизни. Его главное значение — это его участие в образовании того окисла, который мы называем водой. Без воды нет жизни, она одно из главнейших условий осуществления жизни. В процессах обмена, свойственных живым существам, вода то диссоциируется, то снова образуется. Запас воды на Земле пока настолько велик, что мы не придаем значения участию живых организмов в ее круговороте. Недостаток воды в пустынях создает сейчас же соответствующее изреживание растительного покрова, уменьшение массы растительного вещества и общее обеднение жизни.

Так как при реакции фотосинтеза, т. е. при усвоении растением световой энергии и углерода, весь кислород углекислоты возвращается атмосфере, тогда как весь кислород воды втягивается в образование углеводов, то в сумме элементы воды превалируют в составе организма даже над углеродом (48,5 % против 45 % сухого веса). Вода, как показали работы акад. В. И. Палладина, играет выдающуюся роль в реакциях диссимиляции при дыхании, она является растворителем при всех перемещениях вещества в организме, а также двигателем при подаче зольных составных частей, всосанных корнями из почвы, из корней в листья, а также при подаче пластических веществ, выработанных листьями, к растущим частям стебля и корня.

Общий круговорот воды, захватываемой в круговорот растительной жизни, таков:

1. Вода океанов, морей, озер, рек и пр., а также вода поверхностного слоя почвы и часть воды, циркулирующей в растениях, как материал для непрестанного испарения.

2. Результат испарения: вода в атмосфере, вода облаков и туманов. Вода разражающихся дождей, снегов и пр.

3. Вода в растениях как химическое сырье, входящее в реакции синтеза при образовании белков, жиров, углеводов и пр. В процессе дыхания и посмертно при разложении растительного вещества процессами гниения, брожения, тления и пр. большая часть этой воды, если не вся она, возвращается в атмосферу.

4. Вода, связанная в соединения кремния в земной коре, а также вода других соединений, образующихся в глубинных областях земной поры. Кроме того, следует учитывать и водород сернистых и хлористоводородных соединений, а также свободный водород, выделяемый вулканами.

Еще Кант в своей космогонии [21]указывал на возможность того, что в результате постоянно идущих процессов связывания воды вся она со временем израсходуется и свободной воды на Земле не останется, почему и жизнь должна исчезнуть. Современная наука выяснила, что процессы освобождения воды из гидратов достаточно мощны, чтобы поддерживать равновесие между водой, вновь образующейся, и водой, входящей в различные сложные соединения, на долгое время.

4. АЗОТ

Азот — необходимая составная часть живого вещества. Вопрос об усвоении его растениями является вопросом первостепенной важности. В сухом веществе растения содержится всего лишь около 1,5 % азота, однако он необходим для образования протеиновых соединений, без него нет белка, нет протоплазмы. Растения, выращенные в почве, лишенной соединений азота, остаются карликами, несмотря на благоприятные общие условия роста.

Основной запас азота — это океан атмосферы, нас окружающей. Зеленые растения лишены способности связывать свободный азот атмосферы, и долгое время агрономы и физиологи растений полагали, что свободный азот атмосферы и связанный азот органических соединений друг в друга не переходят. При гниении белков образуются аммиачные соединения, которые затем окисляются особыми селитряными бактериями в соединения азотной кислоты, а последние, входя в почвенный раствор, обеспечивают в дальнейшем рост растений. Таким образом, круговорот связанного азота захватывал только азот белков и азот азотнокислых солей почвы, если не считать промежуточных реакций. Позднее был открыт целый мир почвенных бактерий, которые обладают способностью окислять свободный азот атмосферы, проникающий в поры почвы вместе с воздухом. Их иногда называют азотособирателями. Способность их связывать азот, точнее, заключается в том, что их протоплазма вырабатывает катализаторы или энзимы, вызывающие соединение азота с кислородом воздуха, водой или так называемым водным остатком (ОН). Благодаря этому в почве постоянно образуются запасы азотнокислых солей, за счет которых растения могут строить свои белки и снабжать азотистой пищей животных и человека.

Назад Дальше