МЕЖДОУ́ЗЛИЕ, часть стебля, заключённая между двумя соседними узлами. Удлиняются междоузлия за счёт особой образовательной ткани – вставочного камбия. У растений с укороченными междоузлиями (подорожник, одуванчик), у деревьев с укороченными побегами (берёза, яблоня) формируются листовые розетки. Самые длинные междоузлия – у лиан, могут измеряться метрами.
МЕЖКЛЕ́ТНИКИ, пространства, возникающие в тканях растений при разъединении, разрушении или отмирании соседних клеток. Соединяясь друг с другом, межклетники образуют в растении систему полостей и ходов, сообщающихся с внешней средой (атмосферой) через устьица и другие отверстия в покровных тканях. Межклетники улучшают газовый обмен между клетками и окружающей средой, могут вмещать продукты выделительных тканей (смолы, эфирные масла, слизи и т.д.). У водных и болотных растений, у которых снабжение органов (особенно корней, корневищ) кислородом затруднено, по межклетникам к ним проходит воздух. Они также обеспечивают плавучесть водных растений.
Ткань с развитой системой крупных межклетников, осуществляющая вентиляцию и газообмен, называется аэренхимой.
МЕЗОДЕ́РМА, средний, или вторичный, зародышевый листок. Представляет собой слой клеток, образующийся у животных (кроме губок и кишечнополостных) между первичными зародышевыми листками (эктодермой и энтодермой) в процессе зародышевого развития. У разных групп организмов возникает различными способами независимо от первичных зародышевых листков или входит в состав одного из них и вычленяется позднее. Мезодерма даёт начало мышцам, скелету, органам сердечно-сосудистой и выделительной систем. Однако следует учитывать, что в современной эмбриологии специализация зародышевых листков (как мест, где закладываются определённые органы) не считается жёсткой, т.к. границы между ними условны, а зародышевые клетки обладают потенциальными возможностями дифференцироваться в различных направлениях.
МЕЗОЗО́ЙСКАЯ Э́РА (мезозой), средняя эра фанерозоя. Включает триасовый, юрский и меловой периоды. Длилась ок. 185 млн. лет. Началась 248 млн. лет назад, завершилась 65 млн. лет назад. В мезозое единые огромные континенты Гондвана и Лавразия начали раскалываться на отдельные массивы суши. К концу мезозоя образовавшиеся континенты имели очертания, сходные с современными. Их окружали обширные мелководные моря. Климат менялся от засушливого в центре континентов до влажного по их окраинам, но повсюду был тёплым на протяжении почти всего мезозоя (похолодание наступило в конце мелового периода). В эту эру произошли две крупные смены растительности. В триасе древняя спороносная флора сменилась господством голосеменных и продвинутых папоротниковых. В меловом периоде появились цветковые растения, которые к концу этого периода стали практиче-ски преобладать на Земле. Большие изменения произошли у наземных и морских животных. В начале эры окончательно исчезли многие примитивные группы земноводных и пресмыкающихся, но прогрессивные лабиринтодонты и некоторые группы зверообразных пресмыкающихся продолжали благоденствовать ещё долгое время. В раннем триасе появились ихтиозавры. В среднем или позднем триасе возникло много новых групп позвоночных: бесхвостые амфибии, млекопитающие, динозавры, крокодилы, черепахи, птерозавры и, скорее всего, птицы. Особенно большого эволюционного успеха достигли динозавры, морские рептилии и птерозавры. Однако к концу мелового периода все они вымерли. Бесследно исчезли также появившиеся в мезозое морские шестилучевые кораллы, новые аммониты, планктонные фораминиферы, рудисты, правильные морские ежи, возникли диатомовые водоросли.
МЕЗОТРО́ФЫ, растения, умеренно требовательные к содержанию зольных элементов в почве (напр., бук, дуб, любка).
МЕЗОФИ́ТЫ, растения, обитающие в условиях достаточного, но не избыточного увлажнения; промежуточная группа между ксерофитами и гигрофитами. Легко подвержены завяданию. Условия жизни мезофитов достаточно благоприятны для роста, поэтому они имеют хорошо развитую корневую систему, относительно большую поверхность листьев. К мезофитам относится большинство растений средней полосы: луговые злаки и бобовые, почти все плодовые культуры, многие овощные растения.
МЕЙО́З (деления созревания, период созревания), этап в образовании половых клеток; состоит из двух последовательных делений исходной диплоидной клетки (содержат два набора хромосом – 2n) и формирования четырёх гаплоидных половых клеток, или гамет (содержат по одному набору хромосом – n). Уменьшение (редукция) числа хромосом (2nn) происходит за счёт того, что на два деления приходится лишь одно удвоение (репликация) хромосомного материала. При оплодотворении гаплоидные гаметы – яйцеклетка и сперматозоид – сливаются и диплоидное число хромосом, характерное для каждого вида, восстанавливается (n + n2n).
В главных чертах мейоз протекает сходно у разных групп организмов и у особей женского и мужского пола. Два следующих друг за другом деления первичной половой клетки обозначаются как мейоз I и мейоз II. Подобно делению соматических клеток —митозу, и мейоз I, и мейоз II состоят из четырёх основных стадий – профазы, метафазы, анафазы и телофазы. Вступающая в мейоз клетка диплоидна, а каждая хромосома содержит удвоенное количество ДНК. В первом мейотическом делении особенно сложна и длительна профаза I (у человека она занимает 22,5 сут). На этой стадии гомологичные хромосомы соединяются (конъюгируют) в пары – биваленты. В каждой хромосоме бивалента различимы в микроскопе две продольные половины – хроматиды, т.е. бивалент представляет собой четвёрку (тетраду) хроматид. В профазе I происходит генетически значимое событие – обмен гомологичными (содержащими одни и те же гены) участками несестринских хроматид, или кроссинговер. В анафазе I биваленты разъединяются и гомологичные хромосомы расходятся к противоположным полюсам клетки, причем, в отличие от анафазы митоза, каждая хромосома сохраняет две хроматиды. В результате число хромосом уменьшилось вдвое, но удвоенным остаётся и количество ДНК, представленное двумя хроматидами. Важная особенность расхождения хромосом заключается в том, что любая, отцовская или материнская, хромосома из гомологичной пары может отойти к любому из полюсов независимо от того, как расходятся хромосомы других пар. Это означает, что число возможных сочетаний хромосом в дочерних клетках обычно очень велико: 2n, где n – число хромосомных пар (у человека – 223). Так происходит ещё одно перемешивание родительского генетического материала – рекомбинация хромосом.
После мейоза I обычно сразу или после короткой интерфазы, во время которой удвоение хромосом не происходит, следует мейоз II. Это деление аналогично митозу с той разницей, что делятся гаплоидные клетки. В анафа-зе II сестринские хроматиды разделяются и, став хромосомами, расходятся к полюсам. Число хромосом и количество ДНК приходят в соответствие, и мейоз II завершается образованием четырёх гаплоидных гамет, каждая из которых несёт уникальный генетический материал. У самок, однако, лишь одна из четырёх гамет – яйцеклетка, способная к оплодотворению.
Мейоз – один из ключевых биологических процессов. Его значение состоит в поддержании в поколениях постоянства хромосомных наборов (кариотипов), т.е. в обеспечении наследственности, и в создании новых сочетаний отцовских и материнских генов, т.е. в обеспечении генотипической изменчивости.
Работа Менделя, не понятая современниками, была забыта и лишь в 1900 г. заново обнаружена и подтверждена другими учёными, пришедшими (независимо друг от друга) к таким же выводам. Учение Менделя стало известно как менделизм.
МЕ́НДЕЛЯ ЗАКО́НЫ, основные закономерности наследования, открытые Г. Менделем. В 1856—1863 гг. Мендель провёл обширные, тщательно спланированные опыты по гибридизации растений гороха. Для скрещиваний он отбирал константные сорта (чистые линии), каждый из которых при самоопылении устойчиво воспроизводил в поколениях одни и те же признаки. Сорта различались альтернативными (взаимоисключающими) вариантами какого-либо признака, контролируемого парой аллельных генов (аллелей). Напр., окраской (жёлтая или зелёная) и формой (гладкая или морщинистая) семян, длиной стебля (длинный или короткий) и т.д. Для анализа результатов скрещиваний Мендель применил математические методы, что позволило ему обнаружить ряд закономерностей в распределении родительских признаков у потомков. Традиционно в генетике принимают три закона Менделя, хотя сам он формулировал лишь закон независимого комбинирования. Первый закон, или закон единообразия гибридов первого поколения, утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым (см. Доминантность, Рецессивность). Напр., при скрещивании гомозиготных (чистых) сортов гороха с жёлтой и зелёной окраской семян у всех гибридов первого поколения окраска была жёлтой. Значит, жёлтая окраска – доминантный признак, а зелёная – рецессивный. Первоначально этот закон называли законом доминирования. Вскоре было обнаружено его нарушение – промежуточное проявление обоих признаков, или неполное доминирование, при котором, однако, сохраняется единообразие гибридов. Поэтому современное название закона более точное.
Второй закон, или закон расщепления, гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм. В случае жёлтой и зелёной окраски семян их соотношение было 3:1, т. е. расщепление по фенотипу происходит так, что у 75% растений окраска семян доминантная жёлтая, у 25% – рецессивная зелёная. В основе такого расщепления лежит образование гетерозиготными гибридами первого поколения в равном отношении гаплоидных гамет с доминантными и рецессивными аллелями. При слиянии гамет у гибридов 2-го поколения образуется 4 генотипа – два гомозиготных, несущих только доминантные и только рецессивные аллели, и два гетерозиготных, как у гибридов 1-го поколения. Поэтому расщепление по генотипу 1:2:1 даёт расщепление по фенотипу 3:1 (жёлтую окраску обеспечивает одна доминантная гомозигота и две гетерозиготы, зелёную – одна рецессивная гомозигота).
Третий закон, или закон независимого комбинирования, утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях. Он основан на законе расщепления и выполняется в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.